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ledge beginners in the field should understand. The book is structured in four

parts, and allows students to appreciate how the concepts in this broad area

build upon each other to produce a cohesive whole as they work through the

chapters. Illustrations work closely with the text to convey concepts and ideas

visually, enhancing student understanding of difficult material, and end-of-

chapter exercises, varying in difficulty, allow students to put into practice

the theory they have covered in each chapter, and reinforce new concepts.

Additional resources including solutions to exercises, lesson plans and pre-

lecture reading quiz questions are available online at www.cambridge.org/

sidebottom.
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Preface

Purpose and motivation

This textbook was designed to accompany a one-semester, undergraduate

course that itself is a hybridization of conventional solid state physics and

“softer” condensed matter physics.

Why the hybridization? Conventional (crystalline) solid state physics has been

prettymuch understood since the 1960s at a timewhen non-crystalline physicswas

still afledgling endeavour. Some 50 years later,many of the foundational themes in

condensed matter (scaling, random walks, percolation) have now matured and

I believe the time is ripe for both subjects to be taught as one. Moreover, for those

of us teaching at smaller liberal arts institutions like my own, the merging of these

two subjects into one, better accommodates a tight curriculum that is already

heavily laden with required coursework outside the physics discipline.

Why the textbook? For some years now I have taught a one-semester course,

originally listed as “solid state physics”, which evolved through each biannual

reincarnation into a course that now incorporates many significant condensed

matter themes, as well as the conventional solid state content. In past offerings of

the course, a conventional solid state textbook was adopted (Kittel’s Introduc-

tion to Solid State Physics) and students were provided with handouts for the

remaining material. This worked poorly. Invariably, the notation and style of the

handouts clashed with that of the textbook and the disjointed presentation of the

subject matter was not only annoying to students, but a source of unnecessary

confusion. Students were left with the impression that solid state and condensed

matter were two largely unrelated topics being crammed into a single course.

Frustrated, I opted to spend a portion of a recent sabbatical assembling all of the

material into a single document that would better convey the continuity of these

two fields by threading both together into a seamless narrative.

So if you are looking for a reference-style textbook that provides a comprehen-

sive coverage of the entire field of condensed matter, read no further because this

is not it. This textbook was not written for practitioners, but rather for novices. It

was designed to help students comprehend, not so much the details, but the major

concepts that form the foundations of condensed matter and crystalline physics.

At the very least I want students to leave the course able to comprehend the

meaning behind terminology used by solid state physicists (e.g., “symmetry
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operations”, “Brillouin zones”, “Fermi sufaces”) and condensed matter physicists

(e.g, “mean field theory”, “percolation”, “scaling laws”, “structure factors”) so

that they might rapidly acclimate to current research in either field.

Layout and use

I confess that my inspiration for the textbook style was Kittel’s Introduction to

Solid State Physics, which has been a valuable guide for maintaining the

development at a level appropriate for an undergraduate audience. Although

criticized by some, his text is now in its eighth edition and has remained a

popular choice for many undergraduate courses on solid state physics (includ-

ing my own). Those familiar with Kittel, will find that this hybrid textbook

incorporates most of the same subject matter (albeit abbreviated in places and

arranged in a different order due to the way it is now interwoven with other

non-crystalline topics) as is found in the first twelve chapters of Kittel.

Students will need a limited exposure to both quantummechanics and statistical

mechanics. The level of quantum mechanics that is provided in an introductory

sophomore-level course on modern physics (1D wave mechanics, particle in a

box, harmonic oscillators) should be sufficient. Beyond that, statistical mechanics

and thermodynamics (specifically, Boltzmann statistics and free energies) are

introduced periodically throughout the text and this is more likely to be the

deficiency for some students. In an effort to help alleviate this and other potential

deficiencies, an appendix is includedwhich provides an introduction to such things

as statistical mechanics, Fourier transforms and the use of Dirac delta functions.

The text is divided into four major parts: Structure, Scattering, Dynamics, and

Transitions. Within each part are anywhere from four to six chapters designed

more to delineate topics than to represent equal amounts of material. Although a

common rule of thumb would be to allot three, 50-minute lecture periods per

chapter, several chapters (e.g., 2, 3, 7, 10, 14, 15) could be adequately discussed

in just two periods and Chapter 5 could likely be addressed in a single period.

The lesson plan that I have adopted looks something like this:

Lecture #1 (50 min) Lecture #2 (50 min) Lecture #3 (50 min)

Week Chapter Chapter Chapter

1 1 1 1

2 2 2,3 3

3 4 4 5

4 6 6 6,7

5 7 7,8 8

6 8 9 9

7 10 10 11
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Can all these topics be covered in a semester? Maybe. In my experience,

I have so far only managed to cover about 85%. Topics to skip are really a

matter of preference. I had no reservations about skipping the subject of bonds

and cohesion (Chapter 3) and only modest discomfort at skipping the subject

of bulk dynamics (Chapter 14). Others that are less interested in amorphous

solids could skip glass structure (Chapter 2), but I would advise not to skip the

material on scattering from self-similar objects (Chapter 8), as this contributes

an important conceptual foundation for much of the materials in the last four

chapters (Chapters 15–18) of the text.

Some might be tempted to skip the development of scattering theory

presented in Chapter 5, so let me petition against this. In my experience,

students struggle with the concept of reciprocal space primarily because of

how most conventional solid state textbooks mysteriously introduce it directly

after discussing Bragg’s law. Students rarely grasp the significance of this

abstract space and probably question why it is introduced at all, given how

Bragg’s law seems sufficient. By first introducing the fundamentals of scatter-

ing in Chapter 5, the reciprocal space appears more naturally as the discrete set

of scattering wave vectors for which non-zero scattering occurs. Bragg’s law is

only presented as a consequence.

Anywhere from five to ten exercises can be found at the end of each chapter.

These come in a variety of difficulty levels and are designed mostly to help

students digest the material and develop skills. Many of the easier problems are

derived from the text itself and ask students to complete the missing steps in a

derivation. Although some may see this as aimless “busy work”, for many

undergraduate students (in my experience) these exercises represent a challen-

ging skill yet to be mastered.

For students

Good luck and I hope this textbook helps you. Please let me know what you do

and don’t like about the textbook so that I can improve it in the future.

Lecture #1 (50 min) Lecture #2 (50 min) Lecture #3 (50 min)

Week Chapter Chapter Chapter

8 11 11 12

9 12 12,13 13

10 13 13 13

11 14 14 15

12 15 16 16

13 16,17 17 17

14 18 18 18
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PART I

STRUCTURE

Picture with me an old cottage nestled in the woods. There is a small house built

of clay bricks that were thoughtfully stacked and interlaced by a master brick-

layer so as to produce a repeated interlocking pattern. The house has a thatched

roof consisting of bundles of straw. The straws in each bundle are oriented in a

common direction to direct rainwater off the roof, and are lashed together with

twine. Around the house is a garden enclosed by a stone wall. Like the brick

walls of the house, the stones in the wall are bonded together with mortar. But

unlike the bricks, the stones lack any sense of a repeating pattern.

In this part of the textbook, we examine the basic structures that are found in

condensed matter as well as the forces (the mortar and twine) that maintain

these structures over long time periods. For our purposes, structures are

divided into two main categories: ordered (like the bricks and the straw of

the house) and disordered (like the stones in the garden wall).

We begin in Chapter 1 with an examination of the structure of crystals

whose periodic arrangement of atoms is a prime example of ordered matter.

Particle positions in the crystal are well-defined and the periodic structure is

seen to extend for very long distances. As a result of this ordering, crystal

structures are rather easy to describe mathematically and provide an excellent

introduction to the concept of symmetry. All of this simplicity and symmetry is

lost for amorphous materials and in Chapter 2 we examine alternative means

for quantifying structures in which particle positions are aperiodic. In the third

chapter, we pause to examine the inter-particle forces that provide the mortar

necessary for condensed matter to form. There we survey the fundamental

types of bonds and discuss how each can influence the resulting structure. In

our final chapter on the topic of structures, we look at magnetic materials.

Although the atoms that compose these materials may be arranged in an

ordered manner, their magnetic moments can either be oriented randomly or,

like the aligned straws of a thatched roof, assume an ordered configuration.





1 Crystal structure

Introduction

We often think of crystals as the gemstones we give to a loved one, but most
metals (e.g. copper, aluminum, iron) that we encounter daily are common
crystals too. In this chapter, we will examine the structure of crystalline matter
in which particles are arranged in a repeating pattern that extends over very
long distances. This long-range order is formally described by identifying
small local groupings of particles, known as a basis set, that are identically
affixed to the sites of a regularly repeating space lattice. As it happens, most
crystals found in nature assume one of a limited set of special space lattices
known as Bravais lattices. These lattices are special by virtue of their unique
symmetry properties wherein only discrete translations and rotations allow the
lattice to appear unchanged. Chief among these Bravais lattices are the cubic
and hexagonal lattice structures that appear most frequently in nature. We
focus extra attention on both to provide a useful introduction to coordination
properties and packing fractions.

1.1 Crystal lattice

Crystals have a decided advantage because of the inherent repeating pattern
present in their structure. In an ideal (perfect) crystal, this repeating pattern
extends indefinitely. However, for real crystals found in nature, the pattern is
often interrupted by imperfections known as defects that can include vacancies,
in which a single particle is missing, and dislocations in which the repeating
pattern is offset. These defects are important for some crystal properties, but
for now we restrict ourselves to only ideal structures. Besides, even in real
crystals large regions containing substantial numbers of particles exist in which
a perfectly repeating pattern is maintained.

Let’s start with an imaginary, two-dimensional example of a crystal that
contains two types of particles (say, large A atoms and small B atoms) as
illustrated in Fig. 1.1. It is clear from inspection that this collection of particles
displays a well-ordered repeating pattern of A and B atoms that can be
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arranged neatly on the square grid that is superimposed. How can we best
describe this repeating pattern? We could simply establish an arbitrary origin
and then list the position vectors for every particle of each type. But that would
be unnecessarily cumbersome given that there is an obvious repeating pattern.
Instead, consider the square grid. The points formed by the intersections of
these grid lines can be referenced from any other point by any combination of
translations of the form:

~T ¼ h~a1 þ k~a2; ð1:1Þ

where h and k are the complete set of integer numbers. The complete set of
these translations define what is known as a space lattice – an abstract set of
points in space that convey the inherent repeating pattern behind the crystal’s
structure.

In Fig. 1.1, we see that some of the larger A atoms are located directly on the
points of the space lattice (grid) and their positions can be referenced by the set
of translations in Eq. (1.1) alone. But other A atoms, as well as the smaller
B atoms, reside off the lattice. To completely describe the particle positions of
all the atoms of the crystal, we must combine with the space lattice a small
subset of atoms (known as a basis) that are repeatedly attached to each lattice
site so as to produce the entire structure. This is much like flooring your
kitchen with linoleum tiles. Imagine that each linoleum tile has a pattern
stamped onto it corresponding to one of the squares in Fig. 1.1. This particular
tile would have two of each type of atom: a complete A atom at the center, one-
quarter of an A atom at each corner, and one-half of a B atom at the middle of

A

B

a1

a2

Figure 1.1 The repeating pattern of atoms A (gray circles) and B (black circles) is mapped onto a lattice (dashed

lines) that is defined by two lattice vectors (~a1 and~a2). The pattern of atoms can be viewed as the

result of attaching tiles (hashed area that contains a total of two A atoms and two B atoms) onto

the lattice.
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each side. When each such tile is positioned with its lower left-hand corner
coincident with a space lattice point, the completed assembly of tiles would
reproduce the crystal structure of Fig. 1.1 as a whole.

1.1.1 Basis set

Thus, to describe the entire structure of a crystal we combine a space lattice,
described by the translations of Eq. (1.1), with a set of basis vectors (referenced
to, say, the lower left-hand corner of the tile) to describe the contents of each tile:

~Ri ¼ xi~a1 þ yi~a2; ð1:2Þ

where xi and yi are fractions. For the particular tile illustrated in Fig. 1.1, the
basis vectors would include:

single central A atom: ~R1 ¼
1

2
~a1 þ

1

2
~a2

four corner A atoms:

~R2 ¼ 0~a1 þ 0~a2
~R3 ¼ 1~a1 þ 0~a2
~R4 ¼ 0~a1 þ 1~a2
~R5 ¼ 1~a1 þ 1~a2

8

>

>

>
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>

>

>

:
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>

>

=

>

>

>

;

1

4
of an A atom each

four side B atoms:

~R6 ¼ 1
2~a1 þ 0~a2

~R7 ¼ 0~a1 þ 1
2~a2

~R8 ¼ 1~a1 þ 1
2~a2

~R9 ¼ 1
2~a1 þ 1~a2
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>
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>

>

>

>

:
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>

>

>

=

>

>

>

>

;

1

2
of a B atom each

This is still more cumbersome than necessary. Consider, as shown in Fig.
1.2, an alternative space lattice composed of diagonal grid lines. Notice that we

A

B

a2 a1

Figure 1.2 The same pattern of two atoms found in Fig. 1.1 are referenced to an alternative, diagonal lattice

with a corresponding redefinition of the tile (hashed area) to contain only one each of each atom.
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have not repositioned any of the particles, only redefined the space lattice we
choose to associate with them. Our diamond-shaped tiles now contain only one
atom of each type. This sort of tile is known as a primitive cell. It is the
smallest-sized tile that can be used together with the space lattice to fill the
space with our desired repeating pattern. Our basis set now requires only two
vectors:

A atom: ~R1 ¼ 0~a1 þ 0~a2

B atom: ~R2 ¼
1

2
~a1 þ

1

2
~a2:

ð1:3Þ

Note here that the entire A atom is now being associated with the tile (even
though three quarters of it sticks outside). Tiles affixed to neighboring lattice
sites will then provide the other three A atoms.

1.1.2 Primitive cells

Primitive cells can be identified by several properties. A primitive cell:

(1) contains only one lattice point,
(2) has the smallest size (area, A ¼ ~a1 �~a2j j) that can just fill the space by

repetition, and
(3) has a basis set containing only one molecular unit (in our case: AB).

Primitive cells are not unique. As shown in Fig. 1.3, yet another alternative
space lattice has been chosen to describe our AB system. The shaded cell
shown has the same smallest size area as our diamonds in Fig. 1.2 and contains

A

B

a2

a1

Figure 1.3 The same pattern of two atoms found in Fig. 1.1 and Fig. 1.2 are referenced to yet another

alternative lattice with an alternative primitive cell (hashed area).
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one of each atom type. However, the basis vectors for this situation would need
to be revised as:

A atom: ~R1 ¼ 0~a1 þ 0~a2

B atom: ~R2 ¼ 0~a1 þ
1

2
~a2:

ð1:4Þ

Wigner–Seitz primitive cell

Although there are many choices for the primitive cell as illustrated above,
there is one alternative known as theWigner–Seitz cell, which will have special
relevance later on in our discussions of solid state physics. Construction of
the Wigner–Seitz cell is illustrated in a series of panels in Fig. 1.4 and begins

(a) (b)

(c)

a2

a1

a2

a2

a1

a1

Wigner–Seitz
primitive cells

Figure 1.4 Steps in construction of the Wigner–Seitz primitive cell. (a) Lines are first drawn from a central

lattice site to all neighboring sites (heavy dashed lines). (b) Each of these lines is then bisected

by a perpendicular plane (heavy solid lines) and the volume enclosed becomes the Wigner–Seitz

cell. (c) The cell is capable of tiling the entire space and is a primitive cell because it contains

one lattice site (at its center).
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by drawing lines from any arbitrary lattice site to neighboring lattice sites
(see Fig. 1.4a). Next, each line is bisected by a perpendicular line (or plane in
the case of a 3D lattice), as illustrated in Fig. 1.4b. The interior region bounded
by these perpendicular lines is then the Wigner–Seitz cell. The cell is seen to be
primitive because it contains just one lattice point (namely, the one at its
center) and can successfully tile the entire space.

1.2 Symmetry

Aside from its repeating pattern, the space lattice possesses another important
characteristic known as symmetry. Consider yourself as a (very small) observer
located on one of the A atoms in Fig. 1.5. When you look around, you observe
nearby B atoms (to the north, south, east and west) and nearby A atoms (to the
NE, NW, SE and SW). If you now move to another point of the space lattice
(atop another A atom), by a translation,~T ¼ h~a1 þ k~a2, you will experience no
sense that your surroundings have changed in any way. In this way the space
lattice is said to possess translational symmetry – if the entire space lattice is
shifted by any of the translation vectors that describe it, the resulting pattern is
unchanged in any observable manner.

In addition to this translational symmetry, which all space lattices possess by
virtue of their repeating nature, there are other important symmetry operations
that define different space lattices. For example, consider yourself again atop
an A atom in Fig. 1.5. If you rotate by 90� you again see the same surroundings
as before you rotated. The space lattice is said to possess a certain rotational

symmetry. Note that this symmetry appears only for specific angles of rotation in

T

a2 a1

Figure 1.5 An observer situated on a lattice undergoes a translation to any other lattice site and finds his/her

surroundings unaltered. The system of particles is then said to possess translational symmetry.
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the crystal. For example, a rotation by 45� on the lattice of Fig. 1.5 will not return
your surroundings to their original state. Only rotations by a multiple of 90�

will do this. Because there are four 90� increments in a full circle, this particular
case of rotational symmetry is referred to as ‘4-fold’ rotational symmetry.

For the two-dimensional situations we are currently discussing, there are an
unlimited number of possible space lattices owing to the fact that any lengths of
the two lattice vectors (~a1 and~a2) can be chosen as well as any angle between
them. However, these generic, oblique lattices like that shown in Fig. 1.6a will
only have 2-fold rotational symmetry unless special restrictions are applied to
the lattice vectors. Special lattices, known as Bravais lattices, can be obtained
with higher degrees of rotational symmetry by placing restrictions on the lengths
and angles between the two lattice vectors~a1 and~a2. For 2D, there are just four
other lattices that can be constructed with other than 2-fold symmetry. These are
shown in Fig. 1.6. Note that 5-fold symmetry is not possible. As one can see in
Fig. 1.6, primitive cells based on pentagons do not correctly fill space.

Additional symmetry operations under which certain space lattices will
return to their original situation include:

(1) Mirror symmetry: reflection about a plane.
(2) Inversion symmetry: rotation by 180� about an axis followed by reflection

through a plane normal to the rotation axis.

Rectangular

Hexagonal

BC Rectangular

Growwwwwl!
arbitrary a

a = 90 �

a = 90 �

(a)

(e)

(b) (c) (d)

Five-fold symmetries
do not exist in a
periodic manner

Oblique Square

=

a = 120 �

=

≠

≠

a = 90 �

≠

a2a1

a2a1

a1

a1

a1 a1

a1

a2

a2

a2

a2 a2

a2a1 a2a1

a2a1

Figure 1.6 The complete set of Bravais lattices (nets) in two dimensions. In addition to the oblique,

there are four other lattices possessing distinct symmetry properties. Of these, only the BC

rectangular is a conventional lattice. Rotational symmetries include 2, 3 and 4-fold but do not allow

for 5-fold symmetries.

9 1.2 Symmetry



(3) Glide symmetry: a combination of reflection and translation.
(4) Screw symmetry: a combination of rotation and translation.

1.2.1 Conventional cells

One of the lattices presented in Fig. 1.6 is not a primitive lattice. The lattice
shown in Fig. 1.6d has lattice vectors identical with those in Fig. 1.6c, but has
an additional lattice point at the center of the cell. In this instance, the two
lattice vectors mark off a conventional unit cell (non-primitive) referred to as a
‘body-centered’ (BC) rectangular lattice. Conventional cells are often intro-
duced as an alternative to their primitive lattices as they afford a better
visualization of the geometrical structure.

1.3 Bravais lattices

Our discussion of 2D lattices has laid much of the groundwork for discussing
lattices in three dimensions. The structures of 3D crystals are again defined by
the combination of a space lattice, described by a set of translation vectors:

~T ¼ h~a1 þ k~a2 þ l~a3; ð1:5Þ

where h, k and l are the complete set of integers, and an appropriate set of basis
vectors:

~Ri ¼ xi~a1 þ yi~a2 þ zi~a3; ð1:6Þ

that locate the contents of each unit cell in relation to any given lattice point.
The volume of a 3D cell is now given by

V ¼ ~a1 �~a2 �~a3j j ð1:7Þ

and is smallest for any of the possible primitive cells that can be constructed.
While any sort of generic lattice could be created with appropriate choice of

the lengths of the three lattice vectors (~a1, ~a2 and ~a3) as well as the angle
between them, symmetry considerations lead to only 13 other, special or
Bravais lattices. All 14 lattice types are illustrated in Fig. 1.7. The generic
lattice (with arbitrary lengths and angles between ~a1, ~a2 and ~a3) is known as
the triclinic, and the other 13 are grouped into six sub-categories based on how
the lattice vectors are restricted to produce a unique symmetry: monoclinic,
orthorhombic, tetragonal, cubic, trigonal and hexagonal. In addition to the
primitive cell forms, some of these categories also contain conventional cell
forms. These are non-primitive cells in which more than one lattice point is
included in the cell. As the majority of crystals found in nature assume either a
cubic or a hexagonal lattice structure, we focus next on the detailed properties
of these two lattice types.
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triclinic
120°

hexagonal

trigonal
monoclinic FC monoclinic

cubic FC cubicBC cubic

tetragonal BC tetragonal

orthorhombic
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= ≠
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Figure 1.7 The complete set of 14 Bravais lattices in three dimensions grouped into seven sets: trigonal,

monoclinic, hexagonal, triclinic, tetragonal, cubic and orthorhombic.
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1.3.1 Cubic lattices

The cell of a simple cubic (SC) lattice, shown in Fig. 1.8, is a primitive cell
because it contains just one lattice site. To see this, you may need to pretend
that the lattice points in each corner of the cube are actually finite-sized balls.
One-eighth of a ball at each corner resides inside the cube while the remaining
seven-eighths resides in other adjacent cells. Thus, in spite of it having eight
corners, any given cell contains just one total lattice site. Because the lengths
of the three lattice vectors are equivalent and orthogonal, the cell volume is
simply V ¼ ~a1 �~a2 �~a3j j ¼ a3.

This simple cubic structure is to be contrasted with the two conventional cell
structures of the body-centered cubic (BCC) and face-centered cubic (FCC)
types. The body-centered cubic (BCC) has two lattice points per cell (one in
the center and one-eighth in each of eight corners) and the face-centered cubic
(FCC) has four lattice points per cell (one-eighth in each of the corners and
one-half in each of six faces). While the FCC and BCC cells are conventional,
each can alternatively be described by corresponding primitive cells affixed to
a non-cubic lattice. Since a primitive cell must contain only one lattice point, a
direct way of constructing these primitive cells would be to assign an origin to
any one of the lattice sites, and choose lattice vectors (~a01, ~a

0
2 and ~a03) that

correspond to the shortest distance to three neighboring lattice sites which are
oriented so as to trace out a rhombohedral with the minimum volume. The
result is shown in Fig. 1.9 for both situations. With a little effort, one can show
(Ex. 1 and Ex. 2) that the volumes of these two primitive cells are a3=2 for the
BCC and a3=4 for the FCC, as expected.

Packing fractions

Another important property of any structural arrangement of particles is the
packing fraction. The ideal packing fraction is a measure of how much space is

a

cubic

Figure 1.8 The simple cubic lattice. The ideal packing fraction is determined by imagining that balloons at each

lattice site are inflated to just touch one another, as shown in the right-hand figure.
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occupied by identical spherical atoms when they are placed on the lattice sites
such that they just touch one another. Imagine that inflatable balloons are
located at the corners of the cube in Fig. 1.8 and are inflated at equal rates until
they just begin to touch. Each balloon will have a radius equal to half the lattice
spacing (a/2) and one-eighth of its volume will reside inside the cube. Hence
the total space inside the cube that is physically occupied by the inflated
balloons is 4pða=2Þ3=3 ¼ 0:524a3, and the fraction of occupied space (the
packing fraction) would be 0.524. A similar analysis (Ex. 3 and Ex. 4) of the
BCC and FCC lattices, results in packing fractions of 0.680 and 0.740,
respectively. These higher packing fractions are to be anticipated since, in
each case, the BCC and FCC structures represent an attempt to compensate for
the empty space of the SC lattice, which is seen in Fig. 1.8 to be concentrated
in the cube center and at the center of each face.

Coordination spheres

Yet another characteristic of lattice structure is its coordination properties. This
concerns the number of nearest (or next-nearest) neighboring lattice points and
their distance. Consider again the SC lattice in Fig. 1.8. For a given lattice
point, the shortest distance to another lattice site is the lattice spacing a. If we
search around any given lattice point at this distance we will encounter six
other lattice sites. Hence, the nearest neighbor coordination number for the SC

BC cubic

FC cubic
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y
x

x
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=

=
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y x +ˆ ( ˆ )= (a/2)
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(a/2) (a/2)
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= y − ˆ z )x +ˆ ( ˆ 
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a2
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Figure 1.9 Lattice vectors for the corresponding primitive lattice of both the BC cubic and FC cubic

conventional lattices.
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lattice is six. Likewise, the next largest distance to another lattice site is
ffiffiffi

2
p

a

and we will find a next-nearest neighbor coordination number of 12.
A summary of the coordination properties and ideal packing fractions of cubic
lattices is provided in Table 1.1.

Rocksalt and diamond

Now let’s consider some common examples of cubic crystals found in nature
to see how their lattice structures arise. First we consider NaCl (rocksalt)
whose Naþ and Cl� atoms are arranged as shown in Fig. 1.10a. The structure
is built from a FCC space lattice containing a basis of two atoms:

Cl atom:~RCl ¼ 0~a1 þ 0~a2 þ 0~a3

Na atom:~RNa ¼
1

2
~a1 þ

1

2
~a2 þ

1

2
~a3:

ð1:8Þ

Table 1.1 Properties of cubic lattices.

SC BCC FCC

Conventional cell volume a3 a3 a3

Lattice points per cell 1 2 4

Primitive cell volume a3 a3/2 a3/4

Nearest neighbors 6 8 12

Nearest neighbor separation a
ffiffiffi

3
p

a=2 a=
ffiffiffi

2
p

Next-nearest neighbors 12 6 6

Next-nearest neighbor separation
ffiffiffi

2
p

a a a

Packing fraction p/6 = 0.524
ffiffiffi

3
p

p=8 ¼ 0:680
ffiffiffi

2
p

p=6 ¼ 0:740

(a) (b)

a

Figure 1.10 (a) The FC cubic structure of NaCl. Left-hand figure highlights the diatomic basis set consisting of

one Cl anion (large solid circle) and one Na cation (large open circle in cube center). Right-hand

figure shows the result when this basis set is attached to the sites of a FC cubic lattice.

(b) The simple cubic structure of CsCl. Left-hand figure highlights the diatomic basis set

consisting of one Cl anion (large solid circle) and one Cs cation (large open circle in cube center).

Right-hand figure illustrates how the smaller size of the Cs cation is comfortably fitted to the

void space present in the SC center.
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Because the FCC conventional cell contains four lattice points, we should find
four units of the chemical formula (NaCl) present in each cell. Let’s check.
Each one of eight corners provides one-eighth of a Cl anion and each one of
six faces provides one-half of a Cl anion inside the cell, resulting in a total of
four Cl anions per cell. Likewise, there is one entire Na cation in the cell center
and each of 12 edges provide one-quarter of a Na cation, resulting in a total of
four Na cations per cell.

Compare this NaCl structure with that of a chemically equivalent salt, CsCl,
shown in Fig. 1.10b. Interestingly enough, the structure here is not built on the
FCC lattice, but on the SC lattice with a basis of two atoms:

Cl atom:~RCl ¼ 0~a1 þ 0~a2 þ 0~a3

Cs atom:~RCs ¼
1

2
~a1 þ

1

2
~a2 þ

1

2
~a3:

ð1:9Þ

Because the SC is a primitive cell, it should contain just one unit of the
chemical formula CsCl, and indeed it does. Why though does CsCl not assume
the FCC structure like NaCl? This difference stems from the differing sizes of
the ions and an inherent tendency for nature to favor efficient packing of space.
In NaCl, the Naþ and Cl� are nearly equal in diameter and, in this instance,
space is best filled by using the FCC structure. However, Csþ is much smaller
in diameter and space is more efficiently occupied using the SC lattice. Thus
the crystalline structure realized in nature is a consequence of many factors
including the size of the particles, their bonding requirements, and a desire to
minimize empty space.

As another example, we consider the structure of diamond. Diamond is
composed entirely of C atoms that are bonded covalently. Because of the
discrete nature of the covalent bond, each C atom must form a single covalent
bond with four other C atoms in order to satisfy the requirement of a closed
electronic shell configuration. This bonding requirement promotes a tetragonal
aspect of the diamond structure, which can be seen in Fig. 1.11a. Here the
diamond structure is composed of an FCC lattice with a basis of two identical
carbon atoms located at

(a) (b) 

Figure 1.11 Crystal structure (FC cubic) of (a) diamond and (b) zincblende (ZnS).
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~R1 ¼ 0~a1 þ 0~a2 þ 0~a3

~R2 ¼
1

4
~a1 þ

1

4
~a2 þ

1

4
~a3

: ð1:10Þ

Zincblende (ZnS), shown in Fig. 1.11b, is identical in structure to that of
diamond, except that the basis contains two dissimilar atoms:

~RS ¼ 0~a1 þ 0~a2 þ 0~a3

~RZn ¼
1

4
~a1 þ

1

4
~a2 þ

1

4
~a3

: ð1:11Þ

1.3.2 Hexagonal lattices

The primitive cell of the hexagonal space lattice, shown in Fig. 1.12a, looks
nothing at all like a hexagon. Instead it resembles a tall rectangular box that has
been squished from four 90� angles to a pair of 120� and 60� angles, respect-
ively. The hexagonal appearance only emerges when three or more of these
boxes are combined.

Hexagonal close packed (HCP)

By far the most prominent occurrence of hexagonal structure in nature appears
in the form of the hexagonal close packed (HCP) structure in which the

A AB AC
(c) 

(a) 

60°°

hexagonal (primitive)

a

c C

A

A

hexagonal close 

packed (conventional)

B

A

A

(b) 

Figure 1.12 (a) Primitive cell of the hexagonal lattice and (b) corresponding conventional cells for the

hexagonal close packed structure. The two conventional cells differ only in the location of the central

lattice site (B versus C). (c) Three conventional cells are combined to form a hexagonal base (A) with

two possibilities for the central layer (AB versus AC).
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primitive cell contains a two particle basis. As shown in Fig. 1.12b, the second
particle is located on one side or the other of the squished box midway up. The
simplest way to view the HCP structure is to consider that it is constructed by
alternating layers of the 2D hexagonal lattice. When we combine three primi-
tive cells each with two basis particles, our bottom layer (layer A) appears as a
hexagonal net (see Fig. 12c). The next layer (layer B) is formed by the second
particle of the basis and again forms another hexagonal net which is offset from
layer A such that the particles in layer B minimize waste space by fitting into
some of the shallows of layer A. If the second particle in the basis set happened
to be located on the other side of the primitive cell, an alternative layer
(layer C) could likewise be positioned atop layer A. In either case, the second
layer is then covered by another layer A, directly over the first layer, which
corresponds to the top of the three primitive cells.

Layering of the form ABABAB . . . or ACACAC . . . makes up the HCP
structure. But layering of the form ABCABC . . . does not! As shown in
Fig. 1.13, this third layering pattern just reproduces the FCC structure. The
packing fractions of the HCP and FCC are identical and both correspond to the
best packing efficiency possible for an ordered arrangement of spheres.

Summary

c The arrangement of atoms in any ideal crystal can be described by a
combination of a space lattice (defined by the set of translations,
~T ¼ h~a1 þ k~a2 þ l~a3) and a basis set (defined in reference to a lattice
site by ~Ri ¼ xi~a1 þ yi~a2 þ zi~a3) affixed to each lattice site.

c A primitive cell contains only one lattice site and has the smallest
volume needed to fill space by the translations, ~T . Conventional cells
contain more than one lattice site.

layer A

layer B

layer C

layer A

layer B

layer C

Figure 1.13 The lattice sites of a conventional FC cubic lattice (left-hand figure) are shown to be equivalent

to the lattice sites of the hexagonal layering ABCABC . . ..
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c Space lattices are categorized according to their special symmetry
properties into 14 distinct types known as Bravais lattices.

c The ideal packing fraction is the ratio of cell space occupied by a
monatomic basis with atoms of maximal diameter to the volume of
the cell itself.

c The coordination number refers to the number of neighboring lattice
sites located at a common distance from a central site.

Exercises

1.1. Show that the volume of the primitive cell of a BCC crystal lattice is
a3/2, where a is the lattice constant of the conventional cell.

1.2. Show that the volume of the primitive cell of a FCC crystal lattice is a3/4,
where a is the lattice constant of the conventional cell.

1.3. Show that the packing fraction of a BCC crystal lattice is
ffiffiffi

3
p

p=8 ¼ 0:680.
1.4. Show that the packing fraction of a FCC crystal lattice is

ffiffiffi

2
p

p=6 ¼ 0:740.
1.5. The 2D crystal shown in Fig. 1.14 contains three atoms with a chemical

formula ABC2. Illustrated in the figure are several possible tiles.
(a) Identify which of the tiles are primitive cells. (b) Identify which of
the tiles are conventional cells. (c) Identify any tiles that are unable to
correctly fill the space. (d) For each primitive cell, provide expressions
for the appropriate basis vectors describing the basis set of atoms.

A
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C

a

i

j

h

g

f

e

c

d

b

a1

a2

Figure 1.14

18 Crystal structure



1.6. Consider again the 2D crystal shown in Fig. 1.14. Describe all the basic
symmetry operations (translation, rotation and mirror only) satisfied by
this lattice.

1.7. For the HCP crystal structure, show that the ideal c/a ratio is 1.633.
1.8. Bromine has an orthorhombic lattice structure with ~a1j j ¼ 4.65

Å, ~a1j j ¼ 6.73Å, ~a1j j ¼ 8.70Å. (a) The atomic weight of bromine is
79.9 g/mol. If it has a density of 3.12 g/cc, how many bromine atoms
reside in a single unit cell? (b) Which type of orthorhombic lattice (i.e, BC,
FC, etc.) is suggested by your finding in part (a)? Explain. (c) If the atomic
radius of bromine is 1.51Å, determine the packing fraction.

1.9. Shown in Fig. 1.15 is the unit cell of a monatomic crystal. (a) How would
you describe this particular crystal structure? (b) What is the maximum
packing fraction you should expect for this specific structure?

Suggested reading

There are many good introductory textbooks that develop crystal structure. These are

just a few favorites:

C. Kittel, Introduction to Solid State Physics, 8th Ed. (John Wiley and Sons, 2005).

J. S. Blakemore, Solid State Physics, 2nd Ed. (W. B. Saunders Co., Philadelphia, 1974).

N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston,

New York, 1976).

M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-

Wesley, Reading, MA, 1975).
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2 Amorphous structure

Introduction

In the previous chapter, we saw how the long-range order of particle positions

in a crystal could be described in a rather elegant manner using a space lattice

that extends indefinitely. In this chapter, we examine instead disordered matter

such as liquids or glasses in which a long-range repeated pattern is absent.

These amorphous materials might not seem as glamorous as their crystalline

counterparts, but they are increasingly prevalent in our world as they comprise

the windows, computer screens and vast array of plastic components that

surround us on a daily basis. In comparison with crystalline structures, these

amorphous materials pose a challenge to describe, and their structure can only

be defined in a statistical sense by introducing an ensemble-averaged, pair

distribution function. In spite of their disordered nature, a robust pattern of

particle positions emerges over short distances. This short-range order reflects

the local coordination of particles and we briefly review the random close

pack and the continuous random network systems as common examples of

amorphous structure.

2.1 A statistical structure

Disordered or amorphous condensed matter has a clear disadvantage in that

particle positions lack any long-range repeating pattern akin to that found in

crystals. This is evident in Fig. 2.1, which illustrates the typical particle

positions of either a glass or a liquid captured at a particular instant in time.

We face a dilemma. The absence of a repeating pattern means that the

crystal description based upon a lattice described by a set of translation

vectors (~T ¼ h~a1 þ k~a2 þ l~a3) will not work in an amorphous system.

Looking at Fig. 2.1, one might be inclined to believe that there is no useful

pattern of particle positions at all. This, however, is not the case. Patterns do

emerge, in a statistical sense, that provide for a robust description of the

amorphous structure.
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2.1.1 Ensemble averaging

Let us return to a thought experiment we performed in the last chapter. When

we examined crystalline structures we imagined sitting on any given lattice

site (or particle associated with it) and observing our surroundings. For the

crystal, we observed the surroundings to be unaffected for certain symmetry

operations (e.g. translation, rotation, reflection). But what happens if we

attempt this same experiment in an amorphous structure like that depicted

in Fig. 2.1?

Imagine we choose a particle at random to sit on and then survey our

surroundings. Our record of observations would include a handful of particles

found nearby and a larger number of others in the distance. If we sat on some

other particle, the details might be a little different, but some aspects would be

retained. We still see a handful of nearby particles and larger numbers off in the

distance. Now, if we desire to characterize the amorphous structure as a whole,

we cannot just use an observation taken when sitting on a single given particle.

Rather, we need to average the observations taken when we have sat on each

and every particle in turn. Or, alternatively, if our amorphous system is a liquid

in which the particles are moving about, we could sit on a given particle and

average the observations of our surroundings as they evolve in time from one

configuration to the next.

These sorts of averages are known in statistical mechanics as ensemble

averages. In each situation, the properties of a large number of thermodynam-

ically equivalent configurations (ensemble members) of a given system are

averaged to produce a robust result that is characteristic of the system as a

whole. As an example, imagine that a large bag of marbles is vigorously

shaken and the density is then measured. The particular density found will

depend upon the actual configuration of the marbles, but if the shaking and

measuring is repeated many times, a robust and reproducible value of density

will be found that is characteristic of a bag of marbles. For amorphous systems,

this sort of ensemble averaging must be performed as part of any robust

description of the structure as a whole.

2.1.2 Symmetry

Now that we have carried out our observations, along with some appropriate

averaging, what do we find? Firstly, if we sit at any point in space (either on a

particle or elsewhere) and rotate about, we will find (on average) the same

surroundings, regardless of the angle through which we turn or the axis about

which we turn. Unlike our cubic crystal that had a 4-fold rotational symmetry

in which only multiples of 90� turns could be executed to return the surround-

ings to their original configuration, our disordered system is isotropic and has

an infinite rotational symmetry.

Figure 2.1

Typical, non-repeating structure

for a disordered monatomic

liquid or glass. The central atom

(black) represents a possible

point of observation.
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Secondly, if we consider making a translation from any arbitrary point in

space to some other location, we will find that (1) the direction we choose to

move does not matter (i.e. the structure is isotropic), and (2) that the distance

we move is (on average) irrelevant. Thus, with appropriate ensemble aver-

aging, amorphous materials are both rotationally and translationally invariant

and possess a high degree of symmetry.

Given this invariance, one might speculate that there is nothing useful to

conclude about the structure. However, while translations from any arbitrary

point to another are invariant, there do emerge robust patterns in the surround-

ings when viewed from the perspective of the center of any particle. These

patterns arise from the pairwise forces acting between the particles and pro-

duce an inherent structure in the form of correlations between particle

positions.

2.1.3 The pair distribution function

In the crystal structure, the presence of a repeating pattern produced a strong

correlation between particle positions. That is, given the position of any one

particle we could predict with 100% accuracy where other particles would be

located. This correlation is formally expressed in terms of a pair distribution

function, gð~r1;~r2Þ, which is defined (see Fig. 2.2) to represent the conditional

probability that, given that there is a first particle center located at~r1, a second

particle center will be located at ~r2. For a crystal lattice, gð~r1;~r2Þ would be

zero, except for the condition when ~r2 �~r1 equals any one of the lattice

translations ~T . In an amorphous structure, such a ‘hit or miss’ probability is

r2

r1

Figure 2.2 Amorphous structure is described in reference to correlations between particle positions.

Given that a particle is present at~r1, we inquire as to the probability that another is present at

some arbitrary~r2.
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not present. Nevertheless, we can explore similar statements about the prob-

ability that two particles will (on average) be located relative to one another.

Because an amorphous material is isotropic, the only feature of~r2 �~r1 that

matters is the magnitude, r ¼ ~r2 �~r1j j. Consequently, for amorphous

materials:

gð~r1;~r2Þ ! gðrÞ: ð2:1Þ

Again, g(r) is the conditional probability that another particle center will be

found a distance r from the center of the first particle. As depicted in Fig. 2.3,

this probability is proportional to the average number of particle centers found

in a small shell of radius r and thickness dr:

gðrÞ /
# particle centers in dV

4p r2dr

� �

; ð2:2Þ

where the brackets ( � � �h i) indicate that this quantity is appropriately ensemble

averaged. This quantity is just a local density of particle centers (excluding the

first particle), nðrÞh iexcl, with units of inverse volume. To make this look more

like a dimensionless probability, we will divide it by the overall (global)

average density, nh i, so as to define the pair distribution function as:

gðrÞ ¼
nðrÞh iexcl

nh i
¼

1

nh i

# particle centers in dV

4p r2dr

� �

: ð2:3Þ

Since the volume element (dV ¼ 4p r2dr) grows in size as r increases, the

local density at large values of r will eventually mimic that of the global

density. Thus at large r, g(r) tends to a value of unity, implying that the

dV = 4π r 2dr

r

Figure 2.3 The local particle density, nðrÞh iexcl, is defined by the number of particle centers (black circles)

resident within the spherical volume element dV ¼ 4� r2dr located a distance r from the central

particle divided by the volume element itself.
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probability of finding a second particle center is no better or worse than the

random odds associated with an average density of particles.

At short distances, however, one finds correlations (undulations) in g(r)

caused by pairwise interactions between the central particle and its nearest

neighbors. Because of these interactions, the local density near the first

particle varies rapidly in response to the coordination shells of nearest and

next-nearest neighboring particles. A typical example of the pair distribution

function for a glass or liquid is shown in Fig. 2.4, and the following features

should be noted.

(1) g(r) ¼ 0 very near r ¼ 0.

Because g(r) is a conditional probability, it only refers to the location of a

second particle. If the particles are taken to be hard spheres of radius b,

then a second particle center cannot be located any nearer the first than

r ¼ 2b, without the two particles penetrating into one another.

r < 2b r ≈ 2b r ≈ 4b 

1st coordination 

shell

2nd coordination 

shellno other atom 

centers can be 

found closer than 

a diameter from 

the central atom

0
0

0.5

0.5

1

1

1.5

1.5

2

2

2.5

3

r (nm)

g
(r

 )

Figure 2.4 The pair distribution function for a monatomic liquid of particles of diameter 2b. For particles with a

hard interaction, no two particle centers can be located at less than 2b apart. The distribution

function exhibits a sharp peak at the first coordination shell (near r ¼ 2b), where a relatively large

density of neighboring particles are located. Higher-order coordination shells are marked by weaker

peaks in g(r).
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(2) g(r) is maximum near r ¼ 2b.

If we travel outwards from the center of the first particle by a distance of

roughly r ¼ 2b, we encounter a concentration of particle centers associ-

ated with the first coordination shell of neighboring particles that are most

strongly attracted to, and thus in a sense “pressed up against”, the first

particle. There is a strong correlation between the particles at this length

scale and the local density is higher than the global density causing g(r) to

attain a value far in excess of unity.

(3) g(r) is minimum near r ¼ 3b.

As we continue past the first coordination shell but not yet to the second

(next-nearest neighbors) coordination shell, we find a region of space that

is generally void of particle centers, causing the local density to fall below

that of the global density.

(4) g(r) displays weak maxima and minima at r � 4b, 5b, 6b, etc.

Beyond the first coordination shell, we observe evidence for weakened

correlations associated with higher-level coordination shells in a series of

damped oscillations in g(r).

(5) g(r) ! 1 as r ! ‘.

These correlations eventually vanish and at large length scales the likeli-

hood of finding a second particle center becomes indistinguishable from

random chance.

The undulations in g(r) for an amorphous system are mainly found only for

distances corresponding to a few layers of coordination and, for this reason, are

described as short-range order, unlike the long-range correlations found in

crystals.

Radial distribution function and coordination numbers

In the case of crystals, we also characterize the lattice structure in terms of

coordination numbers and distances. Each peak in g(r) represents a coordin-

ation shell whose coordination distance corresponds to the location of the

peak. We can likewise determine a corresponding coordination number by

integration. If we rearrange Eq. (2.3), we can express the number of particle

centers in a small volume element as:

# particle centers in dVh i ¼ nh igðrÞ4p r2dr: ð2:4Þ

The quantity, nh igðrÞ4p r2, is often referred to as the radial distribution

function and, when it is integrated over a range of r corresponding to a specific

peak in g(r), as illustrated in Fig. 2.5, we obtain the coordination number for

the corresponding shell:

# particle centers in shellh i ¼

ð

peak in gðrÞ

nh igðrÞ4p r2dr: ð2:5Þ
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2.2 Two amorphous structures

Amorphous materials possess short-range order as evidenced by correlations in

g(r) at short distances. However, there are two distinct variants in the short-

range order that depend upon the nature of the bonds that are present between

the particles. In some materials, the bonding is isotropic: a given particle can

form multiple bonds with other particles at arbitrary directions and distances.

This is typical of van der Waals bonds and ionic bonds. In other, covalently

bonded, materials the bonding is discrete: a given particle forms only a limited

number of bonds with neighboring particles. These two extremes of bonding

produce differences in the nature of the short-range order of the amorphous

structure. Isotropic bonds result in what is known as a random close packed

structure, while discrete bonds result in a continuous random network.

2.2.1 Random close packed structure

The random close packed (RCP) structure corresponds to the structure illus-

trated in Fig. 2.1 and is that which forms when hard spheres (marbles, ball

bearings) are packed together. Indeed much of the investigation of the RCP

structure is derived from studies (using either real balls or simulations on a

computer) of the packing of hard spheres. These studies reveal that random

packing leads to a poorer filling of space than that of hexagonal close packing
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Figure 2.5 Radial distribution function based on g(r) presented in Fig. 2.4. Note how the undulations in g(r)

are now superimposed on 4�r2 (dashed curve). Inset illustrates how integration of the area

under the first peak of the radial distribution function (hashed area) produces the coordination

number of the first shell.
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(HCP), discussed in the previous chapter. The RCP structure averages a

packing fraction of about 64% in comparison with the 74% found in the

crystalline HCP.

One might wonder why the RCP structure is less efficient at filling

space, given that we are no longer constrained by a repeating pattern but are

free to jam balls together in any fashion we wish. There is an insightful

moral underlying the differing packing efficiencies of the (ordered) HCP and

(disordered) RCP. In the HCP, it appears that Nature “plans ahead” in adopting

this structure of long-range order, knowing that this entire structure will more

efficiently fill space in the end. Contrast this with what happens when particles

are assembled without the benefit of a blueprint in a haphazard “one-at-a-time”

process, guided only by a desire to minimize wasted space at each step. If we

took marbles and glued them together one at a time, all the while striving for

the most compact assembly, by the time we had glued five together we would

have obtained a bipyramid arrangement, like that shown in Fig. 2.6a.

So far, this arrangement of particles is identical to ones found in the HCP

structure. However, when we add the sixth marble (Fig. 2.6b), our narrow-

minded recipe dictates that we place it on the recess of any one of the six faces

of the bipyramid, and this is where we begin to deviate from the HCP

blueprint. Although we have worked to maintain a compact, space-saving

arrangement, as we continue to add marbles to our assembly, we will quickly

find that we are developing large voids of empty space! In the case of the HCP,

Nature, by planning ahead, accepts a small amount of empty space on a local

scale to achieve an overall conservation of empty space on a larger scale. In the

case of the RCP, there is no blueprint to follow and the tendency to fill space on

a local scale eventually results in less efficient packing.

In addition to differences in packing, the HCP and RCP structures have

other characteristic differences. Consider again our bag of marbles and sup-

pose we construct about the center of each marble the Wigner–Seitz cell in

which a perpendicular face is placed at the midpoint of the line connecting the

marble center with every other nearby marble center, as shown in Fig. 2.7a.

The resulting Wigner–Seitz cell will assume the form of a polyhedron known

as a Voronoi polyhedron, and will have variations in the number of faces per

cell and the number of edges per face, depending on the marble in question. If

we had constructed Wigner–Seitz cells for the crystalline HCP structure, all the

polyhedra would be identical with 12 faces per cell and four edges per face.

However, for the RCP structure, a distribution of polyhedra arises, as shown in

Fig. 2.8, with a high occurrence of pentagonal faces and a larger number of

faces per cell than found for the HCP.

The random packing of M&M ellipsoids

For many years, it was largely assumed that any and all forms of random

packing were limited to a packing fraction no greater than the 64% seen for

(a)

RCP

(b)

HCP

(c)

Figure 2.6

(a) Five spherical particles are

assembled while maximizing the

packing fraction. (b) When the

sixth particle is added it can

either lead to the RCP structure,

if the minimization of wasted

space is enforced on a local

scale, or to the HCP structure, if

the minimization of wasted

space is only enforced on the

global scale.
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packing of hard spheres. However, in 2004, students working in the lab of

David Weitz surprised the condensed matter community when they observed a

packing fraction of 72% for the random packing of ellipsoids (actually M&M

candies).

Why would ellipsoids pack better than spheres? The answer seems to be

that, unlike spheres, ellipsoids experience both a force and a torque due to

contact with neighbors. When a sphere is pressed by other spheres, the

forces act only along the radius without producing any torque about the

sphere's center. Hence, the sphere is stabilized against translation and

rotation by balancing the forces alone. In order to stabilize an ellipsoid,

both the forces and the torques must be balanced. It seems that the added

requirement of balancing the torque necessitates an increased number of

neighbors (on average), and that this is responsible for the larger packing

fraction.

2.2.2 Continuous random network

The RCP structure is most often encountered in amorphous materials that

interact by weak, isotropic forces such as ionic bonds and van der Waals bonds.

In the case where covalent bonds produce the condensed phase, a continuous

random network (CRN) of covalent bonds is formed. This arises because the
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Figure 2.7 (a) The RCP lattice is decomposed into Wigner–Seitz cells (also known as Voronoi polyhedra). Like

snowflakes, no two polyhedra are exactly alike. (b) The RCP structure can, however, be characterized

by the distribution of Voronoi polyhedra types according to the number of faces and number of

edges they possess. Solid vertical lines locate the corresponding properties for the Wigner–Seitz cell

of the HCP structure for comparison. (Adapted from Finney (1970).)
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covalent bonds form discrete linkages between particles and thus lead to a

restriction on the number of particles present in the first coordination shell. As

an example, consider the structure of amorphous SiO2. Silicon is a group 4

element of the periodic table and so requires four shared electrons to mimic the

closed electron configuration of an inert gas element. It obtains these four

additional electrons (one each) by forming a single covalent bond with each

of four oxygen atoms. Oxygen resides in group 6 of the periodic table, and so

needs two additional electrons to mimic the electron configuration of an inert

gas. To do this, each oxygen forms a single covalent bond with each of two Si

atoms. Thus, a continuous network of Si and O atoms is produced in which each

Si bonds to four O and each O bonds to two Si, as shown in Fig. 2.8.

Short-range order

In its crystalline form, SiO2 (quartz) is constructed of SiO4 tetrahedra, each

with identical bond angles of 109� for the O–Si–O linkage and identical bond

lengths. In the amorphous form, these angles and bond lengths vary somewhat
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Figure 2.8 The radial distribution function of amorphous silica obtained by neutron scattering. Short-range

tetrahedral ordering is indicated by the series of peaks corresponding to increasing particle

separations: the Si-to-O bond length, the O-to-O separation and the Si-to-Si separation. (Adapted

from Henniger, Buschert and Heaton (1967).)
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from one tetrahedral unit to the next, forming a distribution of bond angles and

lengths, as illustrated for a 2D analog in Fig. 2.9. What emerges is a network

that possesses short-range order (SRO) but no long-range order (LRO). That is,

while orderly on short distances in the sense that there is a discrete set of atoms

in the first coordination shell owing to the tetrahedral units, variations in bond

angles and lengths generate a network that becomes progressively more

random at larger length scales. This SRO is evident in the radial distribution

function for SiO2, shown in Fig. 2.8, where the first three peaks correspond to

the coordination of Si–O, O–O and Si–Si atoms, in increasing order of their

separation.

Another insightful example of CRNs comes from so-called chalcogenide

glasses (e.g. Se, S) that are based on elements from column 6 of the

periodic table. Because Se and S reside in column 6 of the periodic table,

each desires two electrons in covalent bonding to complete a closed elec-

tron configuration. This means that amorphous Se (or S) would be com-

posed of chains of atoms in which each Se (or S) is connected to two others

(Se or S). In the case of S, these chains tend to close up to form eight-

membered rings. But for Se, they tend to form long extended chains or

linear polymers. Disorder arises because the bond angles at each linkage can

be altered slightly causing the chain to bend and fold to resemble something

like a strand of spaghetti in a bowl of pasta (see Fig. 2.10a). The bending

and folding, compounded with the interweaving of multiple chains, renders

an absence of long-range order, despite a well-defined short-range order,

with a coordination number of 2.
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Figure 2.9 A schematic comparison of the covalent network structure of a two-dimensional crystal and glass.

The disorder results in a distribution of bond angles and ring sizes that characterize the continuous

random network structure.
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The addition of small amounts of elements from nearby columns of the

periodic table, such as As and/or Ge, produces crosslinks between the Se

chains. For example, when As (column 5) is added, it will form three covalent

bonds with Se to create an AsSe3 unit. Likewise, if Ge (column 4) is added, it

will form four covalent bonds with Se to produce a GeSe4 unit. The effect of

these additions, as shown in Fig. 2.10b, is to create randomly placed attach-

ments between the polymer Se chains in a process known as gelation.

Summary

c The structural features of amorphous matter emerge only in a statistical

sense via appropriate ensemble averaging, and only in reference to

particles correlations about any arbitrarily chosen central particle.

c The pair distribution function, g(r), is a ratio of the average local

density found at some distance, r, from a central particle to the global

density overall. Strong correlations appear as undulations in g(r) asso-

ciated with the first few coordination spheres.

c Short-range order (SRO) is characterized by g(r) for r � particle

spacing and is sensitive to the specific nature of the pairwise forces

between particles. The random closed packed (RCP) structure arises in
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Figure 2.10 (a) The polymeric structure of amorphous Se is formed by long chains of covalently bonded

atoms with two bonds per atom. (b) Additions of either As or Ge allow for crosslinks to form with

sites that have either three or four covalent bonds, respectively.
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situations of weak or non-existent bonding (e.g. in van der Waals

liquids and systems of hard spheres), while stronger and discrete

covalent bonds produce a continuous random network (CRN) structure.

c In comparison with their crystalline counterparts, amorphous materials

are characterized by a distribution of bond angles and bond lengths.

Exercises

2.1. An ideal gas consists of non-interacting, point particles that move about

in rapid and incessant fashion. Sketch the form of g(r) for this ideal gas

and discuss its features.

2.2. Find a copy machine and make a reproduction of Fig. 2.11 below that

represents the atoms in an amorphous solid and, using a compass,

manually calculate g(r) for a single ensemble using the dark particle

as the central particle. Do this with a dr no larger than the particle

radius, b. Plot your result and identify the first and second coordination

spheres.

Figure 2.11
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2.3. Figure 2.12 shows the nematic phases of two liquid crystals: (a) a

discotic liquid crystal and (b) a lipid liquid crystal. For each of these

partially amorphous systems, discuss the symmetry properties including

both translational and rotational symmetries.

2.4. The pair distribution function for a bag of marbles is shown in Fig. 2.13.

From the figure, (a) determine the nearest and next-nearest separation

distances corresponding to the first and second coordination shells, and (b)

estimate the coordination number for thefirst and second coordination shells.

2.5. A common chalcogenide glass is As2Ge3. Determine the average coord-

ination number for this system.

2.6. Typical window glass is formed from a mixture of approximately 70%

SiO2, 20% Na2O and 10% CaO, known as soda-lime-silicate. How does

the addition of Na2O and CaO affect the CRN of SiO2 if the O donated

by either is to end up bonded with a Si atom?

Suggested reading

For a good introduction to amorphous materials, I recommend the first three texts. Those

interested inmore details about the packing of ellipsoids are directed to the article listed last.

(a)

(b)

Figure 2.12
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3 Bonds and cohesion

Introduction

What makes condensed matter “condensed”? The answer is stickiness (i.e. an
attractive interaction) that exists between the particles that make up a liquid or
solid. In the last two chapters we have looked at two extremes of particle
arrangements in matter: ordered (crystalline) and disordered (amorphous). In
this chapter, we now examine the nature of the forces that form between
particles and which promote the formation of a condensed phase of matter.
We begin by reviewing the five major bonds (van der Waals, covalent, ionic,
metallic and hydrogen bonds) and conclude by considering the overall cohe-
sive energy in a crystal. As thermodynamics generally favors the system with
lowest energy, this cohesive energy is part of what determines why a particular
crystal structure is adopted in Nature, rather than another structure.

3.1 Survey of bond types

In order for matter to condense, there must be an attractive force between the
particles to promote their mutual gathering together. Of the four fundamental forces
in Nature, the two nuclear forces (strong andweak) play no role in the condensation
process and the gravitational force is far too weak to drive the process at ordinary
terrestrial temperatures and pressures. Instead, the fundamental force that binds
particles together in condensed matter arises from electrostatic interactions.

In spite of the common origin for the interaction, the bonds that form between
particles are divided into five main types depending upon how the attractive
interaction forms as a result of the distribution of charge on the particles
themselves. These five bond types are: the van der Waals bond, the ionic bond,
the covalent bond, the metallic bond and the hydrogen bond. Their relative
strengths are indicated by a handful of examples presented in Fig. 3.1.

3.1.1 The van der Waals bond

Weak in comparison to other bond types, van der Waals bonds are always
present in the condensed phase and are the only means by which the noble
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elements in column 8 of the periodic table can be condensed from a gas. All of
the atoms in this column have exactly the required electrons to completely fill an
electron energy level. All the quantum numbers are balanced, resulting in zero
net spin and a spherically symmetric electron charge distribution. Consequently,
the atom as a whole produces no net external electric field and appears neutral.

Given this neutral appearance, one might then wonder how these
elements are able to condense from a gas at all. They nevertheless do
condense, albeit only at very low temperatures as indicated in Fig. 3.1.
To understand where the attractive force between these elements comes
from, we must recognize that the electron cloud surrounding the nucleus is
not rigidly attached, but can be distorted slightly (say by small thermal
fluctuations). When the electron cloud is displaced slightly off-center from
the nucleus, a non-zero electric dipole moment results whose external
electric field is no longer zero. Other atoms nearby can couple with the
field produced by the first atom in such a way as to produce a weak,
mutually attractive force whose pairwise potential energy varies inversely
with the separation as:

uvdW ðrijÞ ¼ �4e
s

rij

� �6

; ð3:1Þ

where rij is the separation between the atom centers, and e and s are appropri-
ately chosen energy and length scales, respectively.
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Figure 3.1 Plot of bond energy (per molecule) versus melting point temperature for a selection of

materials that encompass all the five bond types (data from Callister (2000)).
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Pauli repulsion

Equation (3.1) indicates that the potential energy of a pair of atoms interacting
via the van der Waals force will be lowered as the two atoms approach one
another, and would diverge should their positions coincide. This, however,
does not occur because as the two atoms approach, there develops a stronger
repulsive force due to the Pauli exclusion principle. As the atoms approach,
first contact is made by the outer electrons of the electron clouds, and the
electrons in the outer shell of one atom attempt to occupy the same space as
electrons from the other atom. Because of Pauli exclusion, this situation is not
tolerated and one of the electrons would need to be excited to a higher energy
level. Since such an excitation is not thermodynamically favored (it requires
input of external energy), the Pauli exclusion principle in effect produces a
repulsive force whose pair potential varies approximately as:

urepulðrijÞ ¼ 4e
s

rij

� �12

: ð3:2Þ

Together with the attractive van der Waals interaction, the total pair interaction
potential, also known as the Lennard-Jones potential, is:

uðrijÞ ¼ 4e
s

rij

� �12

�
s

rij

� �6
( )

: ð3:3Þ

A sketch of this potential is presented in Fig. 3.2, which shows how the
potential develops a minimum at some finite separation distance known as
the bond length.
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Figure 3.2 The van der Waals pair interaction (solid curve) showing the separate attractive and repulsive

contributions (dashed curves).
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3.1.2 Ionic, covalent and metallic bonds

The next three bond types occur for elements whose outer electron shell is not
completely filled, but wishes to be. In these bonds, the excess outer electrons
are akin to a commodity: something each element has which it either wishes to
trade away or collect more of. This trading occurs in an effort to attain (or at
least attain the appearance of) the happy existence of a closed electron shell
configuration, such as is enjoyed by the noble gas elements. The differences
between these three bond types lies in both the willingness of the element to
trade electrons and the manner in which the electrons are shared by others.

Ionic bond

Ionic bonds form between elements that are aggressively interested in trading
electrons. These are dominated by the combination of elements in group 1 of
the periodic table (the alkalides), whose excess electron is rather easily ionized,
with elements in group 7 (halides) which have a large electron affinity. A good
example is rocksalt (NaCl), in which the Na atom gives away its electron to the
Cl atom. As a result, Naþ attains the closed shell configuration it desires as
does Cl�. Two happy consumers emerge after the trade is made and the result
is the formation of two dissimilar charges that are attracted by the traditional
Coulomb interaction:

uCoulðrijÞ ¼ �
kZiZje

2

rij
; ð3:4Þ

where k ¼ ð4peoÞ
�1 ¼ 8:99� 109 Nm2/C2 and Zi and Zj are the magnitudes of

the ion charges.
Again, this attractive interaction is overshadowed at short separation dis-

tances by the repulsive Pauli exclusion interaction to produce a net pair
interaction potential of the form:

uðrijÞ ¼ 4e
s

rij

� �12

�
kZiZje

2

rij
: ð3:5Þ

Note that, since the attractive potential for the ionic force varies as just 1/rij, it
is far more effective at large separations than was the van der Waals force and
results in stronger bonds, as evidenced in Fig. 3.1.

Covalent bond

In comparison with the ionic bond, covalent bonds generally form between
elements that are less inclined to trade away their electrons completely, but
which are willing to share them with others. Details of the interaction potential
for the covalent bond require a quantum mechanical treatment that is beyond
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the scope of this textbook. However, some insight into how covalent bonds
form can be gleaned from a simple quantum mechanical consideration of the
bonding that occurs in H2.

The quantum mechanical wave function that describes the two electrons in
H2 is formed by a combination of both a space wave function (describing the
electron density) and a spin wave function:

C ¼ cspace � cspin ð3:6Þ

Since the two H nuclei represent a double-well potential, the space wave
function has two possible states: one symmetric and the other anti-symmetric,
as illustrated in Fig. 3.3. Similarly, the spin wave function can be either
symmetric (with both spins aligned) or anti-symmetric (with both spins
opposed).

Now, one feature of the Pauli exclusion principle is the requirement that the
total wave function for the two electrons must be anti-symmetric. Thus, of
the four possible combinations in Eq. (3.6), only two:

CA ¼
cspace;A � cspin; S

cspace;S � cspin;A

�

ð3:7Þ

are permitted.
Consider what happens to the space wave function as the two nuclei

approach each other. For the case of an anti-symmetric space wave function
(Fig. 3.3b), the electron density remains localized around each nucleus separ-
ately with zero density at the midpoint in between. In this instance, the
electrons are not being shared and a covalent bond is not formed. However,
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Figure 3.3 Diatomic hydrogen is formed by bringing two hydrogen atoms into close proximity. (a) In the case of

a symmetric space wave function, a covalent bond is formed with finite sharing of the electron

density. (b) A bond is not formed in the case of an anti-symmetric space wave function.
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in the other situation (Fig. 3.3a) in which the space wave function is symmetric
and the spin wave function is anti-symmetric, the electron density at the
midpoint between the two nuclei increases on approach, giving rise to sharing
of the two electrons and formation of a covalent bond. This interpretation
is confirmed by exact calculation of the interaction potential, as shown in
Fig. 3.4, which indeed reveals a potential minimum forming in the case of a
symmetric space wave function with spins anti-aligned.

For our purposes, the origin of the covalent bond is far less important than its
consequences. Because the covalent bond involves the sharing of electrons, there
arises a limit to the number of such bonds that can be formed with any given
element. As a result, covalent bonds form only discrete, directional bonds to a
limited number of neighboring atoms. This is unlike the van der Waals and ionic
bonds, which in principle form isotropic bonds with all other atoms in the vicinity.

Consider the ammonia molecule (NH3) as a simple example of covalent bonds.
Nitrogen, from group 5 of the periodic table has v¼ 5 excess (valence) electrons
in its outer electron shell, while each H atom is just shy by one electron of
completing a noble gas configuration. Because N has v ¼ 5 valence electrons, it
can form amaximum of only 8 – v¼ 3 single covalent bonds with other elements.
In the case of NH3, three of the electrons from N are shared with each of three
H atoms and each electron of the H atoms is shared by N. By sharing these
electrons, each atom in the molecule attains the appearance of a closed electron
configuration. The directional nature of the covalent bonds in NH3 is evidenced
by the highly symmetric molecular shape it assumes, as shown in Fig. 3.5.

Other examples of covalent bonding include CCl4, CO2 and N2. For
C (group 4) our 8 – v rule limits covalent bonding to a maximum of four bonds.
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Figure 3.4 The pair interaction for diatomic hydrogen is purely repulsive in the case of an anti-symmetric

space wave function, but exhibits a potential well (i.e. a covalent bond) in the case of a

symmetric space wave function.
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Chlorine, which like H is just shy of a full electron shell, contributes one of its
electrons to the bond and, together with four electrons shared by C, produces four
single covalent bonds. Again, the discrete bonding gives rise to a symmetric
tetrahedral form for the CCl4 molecule (see Fig. 3.5). In CO2, the O atom
(column 6) is shy of filling its electron shell by two electrons. In bonding with
C, two electrons of C are shared by each O (a double covalent bond) to attain the
noble gas configuration for all the atoms. In N2, our 8 – v rule suggests a
maximum of three covalent bonds. However, N2 forms a solitary triple covalent
bond in which three electrons are mutually shared between each N atom.

Metallic bond

The metallic bond is commonly found in monatomic materials, including the
many metals found in the central portion of the periodic table. Like the ionic
bond, the atom is eager to trade away its excess valence electron in order to
achieve a closed shell configuration. The only problem is that there is no other
atom present that desires to collect these unwanted electrons, and so they are
cast off to produce a continuous gas of electrons surrounding the, now
positively charged, ion cores, as shown in Fig. 3.6. The ion cores, which
remain after ejecting their excess electron, would normally be repelled by
electrostatic forces, but because they are surrounded by a gas of electrons,
they actually experience an overall attraction.

3.1.3 The hydrogen bond

With a single electron, the hydrogen atom should form a covalent bond with only
one other atom. However, when it forms covalent bonds with highly electronega-
tive atoms like oxygen, nitrogen or fluorine, the electron cloud distribution of the
hydrogen atom is severely distorted and the positive charge of the hydrogen
nucleus is left exposed on the side opposite the covalent bond, as illustrated in
Fig. 3.7. This exposed nuclear charge forms a hydrogen bond donor site that can
“bond” to another nearby electronegative atom (a hydrogen bond acceptor) so as
to form a hydrogen bond. The hydrogen bond is intermediate in strength between
that of a covalent bond and a van der Waals interaction, and is responsible for the
unique properties of many associated liquids including water.

3.2 Cohesive energy

3.2.1 Crystals

Having examined the five bond types, we now consider how the multiplicity of
bonds present in a large collection of particles might influence the resulting

NH3

CCl4

CO2

N2

Figure 3.5

Illustrations of the 8 – v rule for

covalent bonding in NH3 and

CCl4. Exceptions to this rule

occur in the case of CO2 and N2
as a result of double and triple

covalent bonds, respectively.
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structure in the crystalline phase. In certain cases (van derWaals and ionic bonds),
we can analytically determine the cohesive energy of a proposed crystalline form
starting from the pair potential (Eq. (3.3) and Eq. (3.5) above). The cohesive

energy is defined as the energy required to disassemble the particles of the crystal
and relocate all so that they are at rest and infinitely separated (so the attractive

2d -

d +d + d + d +

d + d +

2d -
2d -

Figure 3.7 Hydrogen bonding in H2O. In forming a covalent bond with O, the single electron of H is

severely dislocated, leaving the positive charge (dþ) of the H nucleus exposed to provide a donor

site for hydrogen bonding. Charge neutrality requires the O atom to be dominated by a net

negative charge (2dþ) to form an acceptor site.

Figure 3.6 The metallic bond in Mg represented as a gas of dissociated electrons and residual ion cores.

From the second column of the periodic table, Mg has two valence electrons that become fully

dissociated in the crystal. The nucleus and remaining inner electrons form ion cores that are arranged

in a periodic fashion and held together by a surrounding gas of free electrons.
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interaction between any two particles vanishes), and to return them to neutral
atoms, if necessary. As a result, the cohesive energy is a measure of ultimate
stability of the particles when they are assembled in a given crystalline form. It
provides a benchmark for themechanical strength of thematerial and ameasure of
the melting point at which thermal energy would be likely to disrupt the structure.
Furthermore, Nature is predisposed to seek out the crystalline form that will
achieve the lowest overall potential energy or greatest cohesive energy. Thus, a
comparison (Ex. 6) of the cohesive energy in possible crystalline forms can help
us to understand why one form might occur instead of another.

We begin with the crystalline forms taken by the noble gas elements of
column 8 in the periodic table, whose pair potential is dominated by the van
der Waals interaction of Eq. (3.3). Inherent in the development of Eq. (3.3) was
the notion that these inert, monatomic atoms prefer to minimize their mutual
separation, provided that their electron clouds do not severely overlap. Thus
we can think of the atoms roughly as spherical particles pressed up in contact
with one another and we can anticipate that the minimum potential energy will
coincide with crystal structures that afford the greatest packing efficiency.
Indeed, the crystalline forms seen for the noble gas elements are either the
HCP or FCC structures for which the packing fraction (74%) is greatest
amongst ordered structures.

To determine the cohesive energy of a van der Waals crystal, we consider
assembling the structure atom by atom. We begin with neutral atoms infinitely
separated and consider the changes in the total potential energy as atoms are
brought into proximity with one another. In Fig. 3.8, we show how the
potential energy changes as the first four atoms are assembled. When a second
atom is placed next to the first, the change in potential energy is uðr12Þ. The
third atom changes that potential energy by an amount uðr13Þ þ uðr23Þ and the
fourth by an amount uðr14Þ þ uðr24Þ þ uðr34Þ, and so on. The total potential
energy for N assembled atoms is thus:

Utot ¼ uðr12Þ þ uðr13Þ þ uðr23Þ þ uðr14Þ þ uðr24Þ þ uðr34Þ þ � � �

¼
1

2

X

i¼ 1;N

X

j¼ 1;N
j 6¼ i

uðrijÞ: ð3:8Þ

Because we are dealing with a monatomic basis set associated with an ordered
lattice structure, our surroundings as viewed from any atom should appear the
same. Thus, the second sum in Eq. (3.8) should not depend upon which ith atom
is chosen in the first sum, and so the double sum should be the same as
N repetitions of the second sum alone as referenced to any arbitrary i ¼ 1 atom:

Utot ¼
N

2

X

j¼ 1;N
j 6¼ i

uðrijÞ ¼
N

2

X

j¼ 2;N

uðr1jÞ; ð3:9Þ

where N is the number of atoms in the crystal.

21
r12

3

r23

r13

21

r24r14

r34

3

21

4

U = u(r12)

∇

U = u(r13) + u(r23)

∇

U = u(r14) + u(r24) + u(r34) 

∇

Figure 3.8
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van der Waals crystals

We can now insert the van der Waals pair potential (Eq. (3.3)) to obtain:

Utot ¼
N

2

X

j¼ 2;N

4e
s

r1 j

� �12

�
s

r1 j

� �6
( )

: ð3:10Þ

The distances r1j represent the distances between the central (i ¼1) atom and
all other atoms in the crystal. Since the crystal has some unique form, it is
convenient to express these distances as fractions of the nearest neighbor
distance, ro, such that:

Utot ¼ 2Ne
s

ro

� �12
X

j¼ 2;N

1

p1 j

� �12
" #

�
s

ro

� �6
X

j¼ 2;N

1

p1 j

� �6
" #( )

; ð3:11Þ

where r1j ¼ p1jro. Eq. (3.11) can be cleaned up to read:

Utot ¼ 2Ne A
s

ro

� �12

� B
s

ro

� �6
( )

; ð3:12Þ

where A ¼
P

j¼ 2:N
p�12
1j and B ¼

P

j¼ 2:N
p�6
1 j are constants that are unique to a

specific lattice type.
Equation (3.12) only expresses the dependence of the total potential

energy on the nearest neighbor distance. To obtain the potential energy
of the crystal at equilibrium, we thus seek the value of ro that minimizes
Utot. Hence, we must first differentiate Eq. (3.12) with respect to ro to
find the equilibrium nearest neighbor distance, and then substitute that
result back into Eq. (3.12). We obtain the equilibrium nearest neighbor
distance as

req ¼
2A

B

� �1=6

s; ð3:13Þ

and equilibrium energy as,

Utot;eq ¼ �Ne
B2

2A

� �

: ð3:14Þ

For the FCC lattice, A ¼ 12.13188 and B ¼ 14.45392, for which req=s ¼ 1.09
and the total cohesive energy/atom is given by:

Utot;eq=N
�

�

�

� ¼ 8:6102e: ð3:15Þ

A similar calculation (Ex. 4) carried out for the BCC structure results in a
lower cohesive energy, and thus supports the adoption of FCC by the noble gas
elements.
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Ionic crystals

We can work out the cohesive energy of an ionic crystal in a similar fashion.
However, a small complication arises because the pair interaction potential
(Eq. (3.5)) contains both attractive and repulsive electrostatic contributions. To
see this, consider constructing NaCl into its FCC structure. We might begin
with a Cl� anion at one corner of the lattice and proceed to place a Naþ next to
it. The two dissimilar charges are attracted and the potential energy is lowered.
However, when we approach with the next atom (either Naþ or Cl�) it will be
both attracted and repelled by our NaCl molecule. Indeed, it is unclear whether
a fully assembled NaCl crystal will be stable at all!

Another issue for our ionic crystal situation is that the basis is diatomic. This
means that, unlike the case of the noble gas elements, the two ions generally
will not have similar sizes. Therefore, it is possible that structures other than
FCC and HCP may be favored when energy considerations are taken into
account. Recall, for example, that while NaCl favors the FCC structure, CsCl
favors the BCC structure.

To compute the cohesive energy, we start as before, but with neutral Na and
Cl spread out infinitely apart. Some amount of energy must be input to ionize
the Na atoms and some energy released when these electrons are received to
form Cl�. We will need to keep account of this net energy, as it contributes
to our definition of the cohesive energy. Having formed the ions, we again
assemble the lattice and find:

Utot ¼
N

2

X

j¼ 2;N

uðr1jÞ ¼
NNa

2

X

j¼ 2;N

uðr1jÞ þ
NCl

2

X

j¼ 2;N

uðr1jÞ ð3:16Þ

where N is the total number of ions, and NNa and NCl are the numbers of Na
and Cl ions, respectively. The two sums in Eq. (3.16) are equivalent for a
diatomic basis set. This is because we can think of NaCl as either an FCC
lattice with Cl� at the corner, or an equivalent lattice with Naþ at the corner.
Consequently, the total potential energy is:

Utot ¼ Npairs

X

j¼ 2;N

uðr1 jÞ ð3:17Þ

where Npairs ¼ N/2 is the number of Naþ and Cl� ion pairs.
Inserting the ionic pair potential (Eq. (3.5)) and again scaling the distances

to that of the nearest neighbor distance, ro, we obtain:

Utot ¼ Npairs A
s

ro

� �12

� a
kZ 2e2

ro

� �

( )

; ð3:18Þ

where

a ¼
X

j¼ 2;N

�
1

p1j
; ð3:19Þ
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is known as the Madelung constant and is unique to a given lattice type. Note
that the minus sign is chosen for pairs of similar charge and the plus sign for
pairs of dissimilar charge.

Again, we can solve for the cohesive energy (aside from the ionization
energy component discussed earlier) by first solving Eq. (3.18) for the equili-
brium nearest neighbor distance at which Utot is minimized (Ex. 2) and then
back substituting to obtain:

Utot; eq ¼ �Npairs
ak Z2e2

req
1�

1

12

� �

: ð3:20Þ

We find that the cohesive energy of an ionic crystal is determined chiefly by
the Madelung energy, ak Z2e2=req; of which a depends on the specific lattice
type. The Madelung constant involves an infinite sum of alternating sign and,
unlike the parameters A and B discussed for the van der Waals case, its
convergence is more gradual. Nevertheless, methods have been developed to
insure the convergence (Ex. 7) and obtain an accurate result.

As an example of calculating the Madelung constant, we consider a simple
one-dimensional ionic crystal, shown in Fig. 3.9. From the figure, we find the
first several terms in the summation to be of the form:

a ¼
X

j¼ 2;N

�
1

p1j
¼ 2 1�

1

2
þ
1

3
�
1

4
þ � � �

� �

: ð3:21Þ

This can be compared with the series identity

lnð1þ xÞ ¼ x�
x2

2
þ
x3

3
�
x4

4
þ � � �

� �

;

to obtain a ¼ 2 ln 2 � 1:386.

3.2.2 Amorphous materials

We saw that for the van der Waals crystals the double summation in Eq. (3.8)
could be reduced to a single sum (Eq. (3.9)) because the result of the second
summation did not depend upon the particle chosen in the first sum. This arose

Madelung 

Constant pijj ≠i

j =1, N

pij = 3

ro

+ +– ––+ +

pij = 2

pij = 11
a ≡ ∑ m 

Figure 3.9 A one-dimensional ionic crystal illustrating the various terms that contribute to the Madelung

constant.
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because of the crystal symmetry in which the surroundings appear identical from
the perspective of any particle. A similar situation arises for a monatomic liquid
or glass, wherein the rotational invariance of the amorphous structure produces
surroundings that are (on average) identical from the perspective of any ran-
domly chosen central particle. Hence we again should find that the average total
potential energy of a van der Waals liquid (or glass) would be given by:

Utoth i ¼
N

2

X

j¼ 2;N

uðr1jÞ
	 


: ð3:22Þ

We can now employ the pair distribution function, g(r), to replace the discrete
summation by an integration. Recall (Eq. (2.4)) that the number of particle
centers in a spherical shell a distance r from a central particle is given by the
radial distribution function:

# particle centers at rh i ¼ nh i4pr2gðrÞdr:

Thus the average potential energy is

Utoth i ¼
N

2

ð

nh i4pr2uðrÞgðrÞdr: ð3:23Þ

Summary

c Attraction between inert gas elements arises from a dipolar interaction
known as the van der Waals force.

c Repulsion between particles is a consequence of Pauli exclusion which
occurs when neighboring electron clouds begin to overlap.

c Ionic, covalent and metallic bonds all involve a redistribution of valence
electrons, motivated by the stability of a closed electronic configuration.

c The cohesive energy is the energy required to disassemble the consti-
tuent atoms of matter, displacing each to infinity and returning each to a
neutral charge state if necessary. It is a measure of the ultimate stability
of a given condensed structure.

Exercises

3.1. Show that the equilibrium separation of two particles interacting through
the Lennard-Jones potential is req ¼ 21=6s:

3.2. Show that the equilibrium nearest neighbor separation for an ionic
crystal is req ¼ 12As12=a kZ2e2ð Þ

1=11
:
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3.3. Ice floats in water because when water is frozen it expands into a lower
density state of matter. Explain this anomalous behavior on the basis of
what you know about the shape of a H2O molecule and the nature of the
hydrogen bond.

3.4. Demonstrate that, energetically, a noble gas element is slightly more
stable in the FCC crystal structure than it would be in a BCC structure,
by calculating the ratio of these two cohesive energies. The lattice sums
for the BCC structure are:

A ¼
X

j¼ 2:N

p�12
1j ¼ 9:11418

B ¼
X

j¼ 2:N

p�6
1j ¼ 12:2533

3.5. Imagine that a 1D chain of ions (with q ¼ �Ze) like that shown in Fig.
3.9 is compressed, so that the separation distance decreases from its
equilibrium value by some fractional amount d (i.e., ro ! reqð1� dÞ).

For the ionic potential of Eq. (3.18), show that the work done (per unit
length of the chain) in compressing the crystal is quadratic (in leading

order) and given as:
11kq2 ln 2

2req
d2:

3.6. Calcium oxide has the FCC structure for which the Madelung constant
is a ¼ 1.7476. Determine the cohesive energies per molecule of the
hypothetical crystals CaþO� and Ca2þO2�. Be sure to account also
for energy required to return the ions to neutral atoms. Assume ro ¼

2.40 Å is the same for both forms, and neglect the repulsive energy.
The energy needed to ionize the first and second electrons of Ca is
6.11 and 11.87 eV, respectively. The energy released when a first and
second electron is added to neutral oxygen is 1.46 and �9.0 eV,
respectively. (Note that energy is actually required for adding the
second electron.) Which of the two hypothetical crystals is most likely
to occur in Nature and why?

3.7. Figure 3.10 shows a hypothetical 2D square lattice of ions. Estimate the
Madelung constant in the following way: First sum only the contribu-
tions to the Madelung constant arising from the ions (or partial ions)
contained within the innermost square. Note that an ion on one edge of a
square is counted as 50% inside and 50% outside and one on a corner is
counted as 25% inside and 75% outside. Show that this first contribution
amounts to þ1.2939. Continue on to the next layer (indicated by the
hashed region). Show that this region alone contributes to the Madelung
constant by an amount þ0.3140. Lastly, compute the contribution from
the outermost layer and show that out to this level the Madelung constant
is þ1.6116.
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Suggested reading

The book by Callister, Jr. is an introductory-level materials engineering textbook

I happened across which does a nice job of describing bonds and crystal structures.

C. Kittel, Introduction to Solid State Physics, 8th Ed. (John Wiley and Sons, 2005).

W.D. Callister, Jr., Science and Engineering: An Introduction, 5th Ed. (John Wiley &

Sons, New York, 2000).
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4 Magnetic structure

Introduction

In this final chapter on the subject of structures, we turn our attention to
magnetic materials. Why? Because magnetic materials are illustrative of yet
another level of structure that often arises in condensed matter, beyond that of
particle arrangements. As we will see, magnetic particles have a property of net
spin and a magnetic moment whose orientation in space is largely unrestricted.
Regardless of whether a large system of magnetic particles is positioned in an
ordered or disordered manner, their spins represent an additional layer of
ordering. The moments could be randomly oriented or aligned in a common
direction. In ferromagnetic systems, these moments interact with one another
to promote a local alignment of the moments which can eventually spread over
the entire system. This is reminiscent of how pairwise bonding between
particles eventually leads to crystallization of a liquid, and it is the archetype
for a wide variety of phase transitions in which order appears in the form of
correlated regions emerging from a disordered host.

4.1 The ordering process

So far, our discussion of structure has focused entirely on particles: their
relative positions and the forces that hold them together. We have seen that
arrangements of particles fall into either an ordered or disordered pattern which
can be characterized by the level of symmetry present. By virtue of its disorder,
the liquid has rotational invariance and an infinite symmetry (on average). The
crystal, however, conforms to a space lattice and possesses only a discrete set
of symmetry operations. In the process of forming a crystal from the liquid, the
symmetry is often said to be “broken”.

In addition to symmetry breaking, the transition from liquid to crystal also
induces a corresponding sharpening of the features found in the pair distribu-
tion function, g(r). Again, this distribution function is a measure of the
conditional probability that, given that a particle is at the origin, another will
be found a distance r away. In progressing from a gas to a liquid to a crystal, as
illustrated in Fig. 4.1, particle positions become increasingly correlated and the
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corresponding g(r) develops progressively sharper and more distinct features
due to the ever increasing precision in locating particle positions.

4.1.1 Correlations and pattern formation

Both symmetry breaking and correlation building are common elements in most
phase transitions and are nicely illustrated in the orientational ordering that
occurs in magnetic spin systems. But before we begin looking at magnetic
materials, let us consider an example that may help to clarify how orientational
structure discussed in this chapter is similar to, but also different from, that
discussed in previous chapters. Imagine a large country uniformly populated by
people that are identical in every respect except for one property: their mood.
For simplicity, we limit the possible moods to just that of either happy or sad. If
these people go about their daily lives without interacting with one another, their
individual mood would be a random result. There would be no bias for a person
to be either happy or sad, and as illustrated in Fig. 4.2a, the country as a whole
would appear uniformly complacent, with neither a balance of happy nor sad.

But suppose that people do interact and can influence each other's mood.
Experience suggests that a person surrounded by happy people tends to be
happy, while a person surrounded by sad people tends to be sad. Interactions
with neighbors serve to bias a person's mood. With this biasing mechanism we
might then expect to find patterns emerging within the society like those
illustrated in Fig. 4.2b, where small enclaves or communities of people
develop with a common mood. Furthermore, we would expect to see these

gas

r

liquid

b r b r

crystal

b r

average density
g(r)

Figure 4.1 An illustration of how developing order is accompanied by sharpening of features in the pair

distribution function. For an ideal gas, particle positions are completely random and g(r) is flat

(the probability of locating a second particle is proportional to the density). For a liquid, the

probability is enhanced at short distances due to the tendency of condensed particles to congregate

about any given particle. In a crystal, the periodic arrangement of particles leads to discrete

distances where the probability is 100%, between which the probability is strictly zero.
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communities grow over time due to an inherent “feedback” built into the
biasing. The larger a community becomes, the more strongly it biases those
potential converts on the periphery. This spontaneous growth would result in
regions of correlated mood that coarsen and eventually merge into one another,
as illustrated in Fig. 4.2c.

But how do we characterize this growing pattern of correlated regions?
A simple average of the property over the entire system would not necessarily
reveal the developing correlations taking place. As we saw in our example
above, correlated regions may be substantial in size, but could still be divided
into nearly equal numbers of happy and sad communities. To illuminate the
presence of these correlated patterns, we need to consider an appropriate
correlation function of the form

CX ð~r1;~r2Þ ¼ X ð~r1ÞX ð~r2Þh i; ð4:1Þ

b L r

C(r)

L

b

b L r

C(r)

ξξ

b L r

C(r)

ξ > L

(a)

(b)

(c)

Figure 4.2 The possible development of correlated patterns of happy and sad communities in a population

of people. In each successive panel, the size of correlated regions is increasing until it rivals the

size of the system itself.
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where X ð~rÞ represents the value of the property for a particle located at~r, and
the brackets again signify the required ensemble averaging. Conceptually, this
correlation function is much like the pair distribution function discussed in
Chapter 2. It expresses a conditional probability that given that some central
particle at~r1 has a certain value of the property X, another particle at~r2 will
have the same value. In practice, the correlation function would be computed
by selecting each particle in the system, in turn, as the central particle and
sampling the similarity of those neighbors a distance D~r ¼~r2 �~r1 away.
Over distances shorter than a characteristic length, x, known as the
correlation length, the property is similar and said to be correlated. At longer
separation distances, the similarity vanishes and the property becomes
uncorrelated.

Although our example involves people with mood swings, we could readily
replace it with particles, each of which has some property whose value can
match or differ from that of its neighbor. Magnetic particles with their intrinsic
magnetic moment are one example.

4.2 Magnetic materials

When we speak of magnetic materials, most often we think of materials like
iron that can be either magnetized or de-magnetized by an external field and
retains the final state of magnetization when the field is removed. Iron is a
ferromagnetic material and, on a microscopic level, each atom of iron contains
a miniature magnetic moment (a particle property) whose individual orienta-
tion is influenced, not only by the external field that is applied, but is also
biased by the orientation of its neighbors. Materials that possess a miniature
moment, but which lack the neighboring interaction, are known as paramag-
nets. Although the moments of a paramagnet can be aligned with an applied
field, paramagnets are unable to retain their magnetization when the field is
removed.

In turn, we will look at both of these magnetic materials, as well as
considering the diamagnetic response, seen mainly in non-magnetic materials
that do not possess a permanent moment. We begin by inquiring into the origin
of the miniature magnetic moment that endows magnetic materials with
magnetization.

4.2.1 Magnetic moments

To understand the origin of the magnetic moment of an atom, consider for a
moment the simplistic Bohr model illustrated in Fig. 4.3, in which an electron
orbits the nucleus with speed u on a circular path of radius r.
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The steady motion of the orbiting electron constitutes a continuously flowing
loop of current,

I ¼
charge

period
¼ �e=ð2pr=uÞ ¼ �eu=2pr; ð4:2Þ

which together with the area of the loop produces a magnetic moment,

morb ¼ IA ¼ ð�eu=2prÞpr2 ¼ �eur=2: ð4:3Þ

Meanwhile, the orbiting mass of the electron produces an angular momentum,
L ¼ mur, directed opposite the magnetic moment. Combining this with
Eq. (4.3), we find that

~morb ¼ � e=2mð Þ~L; ð4:4Þ

and conclude that the magnetic moment ultimately arises from the angular
momentum of the electron. This conclusion is unchanged by a quantum
mechanical approach, and since quantum mechanics requires that the angular
momentum should be quantized in discrete units of �h, the orbital magnetic
moment must appear in discrete units of a Bohr magneton,

mB ¼ e�h=2m ¼ 9:27� 10�24Am2:

In addition to the orbital angular momentum, there is also electron spin that
contributes to the overall angular momentum of an atom. For the electron, spin
is quantized and the quantum number can assume either ~s ¼ � 1

2 �h. Without
going into the detailed quantum mechanical treatment, the electron spin of a
free electron is found to contribute to the magnetic moment by an amount,

~mspin ¼ �gmB~s; ð4:5Þ

where the so-called splitting factor, g ¼ 2.0023.
For completeness, we should also acknowledge that there is yet another

contribution to the magnetic moment that arises from the intrinsic spin of the

  L 

  
r 
s 

µ spinr 
µ orb

υ

ρ

e

Figure 4.3 Bohr model of an orbiting electron indicating the orbital and spin contributions to the

magnetic moment.
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nucleus. Again, the nuclear magnetic moment appears in quantized units, but
of a smaller size, mn ¼ e�h=2mp ¼ 5:05� 10�27Am2, known as a nuclear

magneton. Although this nuclear magnetic moment plays an important role
in nuclear magnetic resonance (NMR), in magnetic materials it is completely
masked by the much larger magnetic moment arising from the electron.

We now see that the magnetic moment has its origin in the combined
orbital and spin angular momentum of the electron, and we begin to get a
glimpse of why not all materials are magnetic. Consider any of the noble gas
elements that form closed electron shells. Since each shell is filled, the total
orbital angular momentum vanishes. Likewise, since each electron is paired
to another with opposite spin (due to Pauli exclusion), the net spin angular
momentum is also zero. Consequently, the noble gas elements have no net
angular momentum and no permanent magnetic moment. They are non-
magnetic. A similar fate is found for many elements of the periodic table in
which electrons appear in pairs so that the vector sum of the angular
momentum vanishes. Magnetic materials then develop only in those fortuit-
ous instances when an outer electron shell is only partly filled and contains an
odd number of electrons.

Determining the magnetic moment of an atom thus boils down to determin-
ing the total angular momentum of its constituent electrons, and presents a
complicated vector addition problem, which is further compounded by rules of
quantization. Luckily, this vector addition problem has already been tackled
and is commonly treated using the Russell–Saunders scheme of spin–orbit
coupling, which can be found in almost any introductory quantum mechanics
textbook. In this scheme, the atom's total orbital angular momentum,
�h~Latom ¼ �h

P

i

~Li, and total spin angular momentum, �h~Satom ¼ �h
P

i

~si, are
combined to obtain a total angular momentum,

�h~J ¼ �h~Latom þ �h~Satom: ð4:6Þ

The magnetic moment of the atom remains proportional to the total angular
momentum and is given by

~matom ¼ �gmB~J ; ð4:7Þ

where the splitting factor is now replaced by

g ¼ 1þ
JðJ þ 1Þ þ SðS þ 1Þ � LðLþ 1Þ

2JðJ þ 1Þ
: ð4:8Þ

4.2.2 Diamagnetism

We are keenly interested in those magnetic materials that fortuitously have a
non-zero angular momentum. But, let us pause momentarily to consider how
the remaining non-magnetic materials respond to an applied field. Although
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they lack a permanent moment, these non-magnetic materials do develop a
weak magnetization that is opposite to the direction of the field. That is, they
exhibit diamagnetic behavior as opposed to a paramagnetic response.

To understand the origin of the diamagnetic response, consider again the
example of the single electron atom illustrated in Fig. 4.3. Suppose we apply a
magnetic field, ~B ¼ mo~H , directed upwards, perpendicular to the orbital plane.
This new field introduces an upward magnetic flux through the loop which, by
virtue of Lenz's law (the one expressing Nature's displeasure with changing
flux), causes the electron to react in such a way as to produce a counter flux.
Assuming that the orbital radius is fixed, a quick check of our right hand rule
reveals that the needed counter flux is achieved by having the electron speed
up (or slow down, if the electron were orbiting in the opposite direction). One
can show (Ex. 2) that the electron suffers a change in its angular velocity by an
amount,

Do ¼ eB=2m; ð4:9Þ

known as the Larmor frequency. This speed change is common to all electrons
in the orbital and, for an atom with Z electrons, the applied magnetic field thus
induces a net change in the current by an amount,

Iinduced ¼ �Ze Do=2pð Þ ¼ �Ze2B=4pm: ð4:10Þ

This current change in turn induces an average magnetic moment,

minducedh i ¼ � Ze2B=4m
� �

r2
	 


ð4:11Þ

directed opposite to the applied magnetic field. Collectively, this produces a
net magnetization per unit volume of

~M ¼ n ~mh i; ð4:12Þ

where n is the particle number density. Because diamagnetic materials
respond to an applied field by producing an induced magnetic moment
proportional to the field but opposite in direction, the magnetic
susceptibility of a diamagnet,

wm ¼
dM

dH
¼ nmo

d minducedh i

dB
¼ � Ze2nmo=4m

� �

r2
	 


; ð4:13Þ

is always less than zero. While the diamagnetic response is only measureable
in non-magnetic materials, it is nevertheless found universally in all mater-
ials, including those magnetic materials that have a permanent magnetic
moment due to a net angular momentum. The size of the induced moment
is however much smaller than that of the permanent moments and in mag-
netic materials the diamagnetic contribution is masked by the paramagnetic
response. Values for the susceptibility for a handful of common elements are
listed in Table 4.1.
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4.2.3 Paramagnetism

As we learned earlier, magnetic materials are those whose constituent atoms
possess a net, non-zero, magnetic moment in the absence of any applied
magnetic field. Such materials are generally referred to as paramagnetic because
the effect of an applied field produces a torque that tends to align moments in the
direction of the field, with a corresponding lowering of internal energy given by,

U ¼ �~m �~B: ð4:14Þ

Unlike ferromagnetic materials, which we will discuss in the next section, this
alignment ofmomentswith thefield disintegrates at anyfinite temperaturewhen the
field is removed due to incessant thermal agitation. Consequently, the magnetiza-
tion vanishes as the moments return to a disordered pattern of random orientations.

Let us consider then a paramagnetic material with total angular momentum
quantum number J. How does the magnetization of this material depend on
both the applied field (acting to align the moments) and the temperature (acting
to randomize the orientations)? The answer to this question requires a thermo-
dynamic approach. Imagine, as illustrated in Fig. 4.4, that the field is applied
along the z-axis. Because angular momentum is quantized, its component
along the z-direction is also restricted to values Jz ¼ mJ�h, where the magnetic
quantum number, mJ, ranges from mJ ¼ J, (J�1), . . . , 0, . . . �(J�1), �J.
From Eq. (4.7), this then implies that the component of ~m along the field is
similarly quantized as mz ¼ �gmBmJ .

Since we also anticipate no net magnetization to appear in either the x- or
y-directions, the magnetization we seek is given by Eq. (4.12) using only the
average value of mz consistent with conditions of thermodynamic equilibrium.
Using Boltzmann statistics, this average can be expressed as

mzh i ¼

P

J

�J

�gmBmJð Þe�Uj=kBT

P

J

�J

e�Uj=kBT

; ð4:15Þ

Table 4.1 Susceptibility of several elements at standard temperature and pressure (values
obtained from Handbook of Chemistry and Physics (1983)).

Diamagnetic Paramagnetic

Element Susceptibility Element Susceptibility

Bismuth �1.6 � 10�4 Sodium 8.5 � 10�6

Gold �3.4 � 10�5 Aluminum 2.1 � 10�5

Silver �2.4 � 10�5 Tungsten 7.8 � 10�5

Copper �9.7 � 10�6 Platinum 2.8 � 10�4

Hydrogen �2.2 � 10�9 Gadolinium 4.8 � 10�1
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where

UJ ¼ �mzB ¼ �ð�gmBmJ ÞB ¼ mJ ðgmBBÞ: ð4:16Þ

One can show (Ex. 5) that this relation reduces to

mzh i ¼ gmBJð ÞBJ ðyÞ; ð4:17Þ

where y ¼ gmBJB=kBT , and

BJ ðyÞ ¼
2J þ 1

2J

� �

coth
ð2J þ 1Þy

2J


 �

�
1

2J

� �

coth
y

2J

� �

� �

ð4:18Þ

is known as the Brillouin function.
Good agreement of Eq. (4.17) with experiment is demonstrated in Fig. 4.5

for several materials of differing J. In all instances, the magnetization increases
with increasing field, reaching a point of saturation in which all the moments
are aligned with the field. In the weak field regime, the magnetization is
roughly proportional to the applied field. Here, we can approximate the
Brillouin function for small argument as

lim
y<<1

BJ ðyÞ ¼
yðJ þ 1Þ

3J
; ð4:19Þ

and obtain the susceptibility as

wm ¼
dM

dH
¼ nmo

g2m2BJðJ þ 1Þ

3kBT
¼

C

T
; ð4:20Þ

a result known as the Curie law.
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Figure 4.4 The total angular momentum, J, is restricted to a discrete set of allowed projections along a

given direction (here taken to be parallel to an applied magnetic field). For each allowed

projection there is a corresponding magnetic moment. States with the moment aligned with the

magnetic field are energetically favored (see Eq. (4.14)).
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An example of paramagnets exhibiting Curie behavior is shown in Fig. 4.6.
In paramagnets, there is no interaction between neighboring moments, and the
ability to align moments using an external applied field is countered only by
the thermal agitation present at finite temperatures. When this thermal agitation
vanishes, at absolute zero, the alignment of magnetic moments then occurs
without competition and, as the diverging susceptibility suggests, any tiny field
will be capable of aligning all the moments.
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Figure 4.5 Magnetization curves for three paramagnets of differing total angular momentum. The solid

lines are a fit to the Brillouin function of Eq. (4.17). (Adapted from Henry (1952).)
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Figure 4.6 The inverse magnetic susceptibility of two rare earth sulphates, demonstrating a linear temperature

dependence consistent with the Curie law of Eq. (4.20). (Adapted from Jackson (1936).)
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4.2.4 Ferromagnetism

Unlike paramagnets, ferromagnets are able to retain their magnetization when
the external field is removed. In actuality, this is only true if they are held at a
temperature below the so-called Curie temperature, Tc. Above the Curie
temperature, the material responds like a usual paramagnet and the magnetiza-
tion vanishes when the field is removed.

To interpret the ferromagnetic behavior it is somewhat natural to suppose
that there exists in these materials some internal interaction between magnetic
moments that biases neighboring moments to adopt a common orientation.
Indeed, early theories of the ferromagnetic state advanced by Pierre Weiss
fashioned this interaction in the form of an internal magnetic field, self-
generated by the net alignment of moments, and thus proportional to the net
magnetization,

~Hint ¼ l~M or ~Bint ¼ mol~M : ð4:21Þ

This so-called molecular field was seen as being both a result of the aligned
moments and yet also a stimulus for additional alignment. Inherent in this dual
nature is a sort of feedback mechanism that can promote the rapid growth of
regions of correlated magnetic moment below the Curie temperature.

Since the molecular field is proportional to the magnetization, the magnet-
ization can then be expressed as a modified form of the Curie law,

M ¼ C=Tð Þ H þ Hintð Þ ¼ C=Tð Þ H þ lMð Þ; ð4:22Þ

where the molecular field is merely adding to that which is applied externally.
Evident in this modified expression is the feedback alluded to earlier: the
applied field promotes an incipient magnetization which in turn increases the
effective field to promote even more magnetization. We can rearrange
Eq. (4.22) to obtain

M ¼
C

T � Clð Þ
H ; ð4:23Þ

and obtain the susceptibility as

wm ¼
C

T � Tcð Þ
; ð4:24Þ

where Tc ¼ Cl is identified with the Curie temperature. This temperature
variation for ferromagnetic materials is known as the Curie–Weiss law and is
illustrated in Fig. 4.7. Unlike a paramagnetic material whose susceptibility
diverges only at absolute zero, the susceptibility of a system of interacting
magnetic moments diverges at the finite Curie temperature. It is at this
temperature that the molecular field, acting to align moments, achieves domin-
ion over the thermal agitation working to disorder the moments.
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Exchange interaction

Prior to the development of quantum mechanics, the only field known to exist
within a magnetized specimen was a dipolar field collectively produced by the
aligned magnetic moments themselves. At the location of each moment, this
dipolar field has a magnitude given roughly as

Bdip �
mo
4p

2 mh i

a3

� �

; ð4:25Þ

where a is the spacing between particles. Unfortunately, this dipolar field is too
weak to account for most ferromagnetic materials, including iron whose Curie
temperature ranges near 1000 K. Combining Eq. (4.20) and Eq. (4.25), we can
express the Curie temperature for the case of a dipolar field as

Tc ¼ Cl � mo
g2m2BJðJ þ 1Þ

3kB


 �

1

2pa3

� �

: ð4:26Þ

For iron (see Ex. 3) this yields only about 3 K, which is some two and a half
orders of magnitude smaller than the experimental result.

The resolution to this problem came eventually from quantum mechanics. In a
fashion analogous to our discussion of the covalent bond in Chapter 3, a quantum
mechanical treatment of the overlapping wave function of two neighboring atoms
produces an additional contribution to the potential energy of the form

uðrijÞ ¼ �2JexðrijÞ~Si �~Sj; ð4:27Þ

where~Si and~Sj are the respective spins of the two atoms. This interaction is known
as the exchange interaction, and the energy parameter Jex, whose dependence on
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Figure 4.7 The inverse magnetic susceptibility of gadolinium demonstrating a linear temperature

dependence consistent with the Curie–Weiss law of Eq. (4.24). (Adapted from Nigh, Legvold

and Spedding (1963).)

61 4.2 Magnetic materials



the atom separation is illustrated in Fig. 4.8, is often referred to as the exchange
integral. As seen in the figure, for a range of intermediate atomic separations, the
exchange integral is positive and results in a lowering of internal energy if the two
neighboring spins are aligned. This is the source of the mysterious biasing of
moments that stabilizes the magnetization in a ferromagnetic material. Although
the source is not really a molecular field but rather a pairwise interaction between
adjacent spins, it is nevertheless convenient to treat the interaction as though it were
the result of a mean field as described by Eq. (4.21).

Correlated domains

Now that we understand the origins of ferromagnetic behavior, we can finally
return to our original theme concerning orientational pattern formation in mag-
netic materials, by considering what happens when we cool a ferromagnet toward
its Tc in the absence of any field. Far above Tc, the moments are orientated
randomly, because the thermal energy far exceeds that of the exchange interaction
and serves to thwart its biasing effect. As we cool, we would expect to find small
communities of similar spin orientation developing, as illustrated in Fig. 4.9.

The specific orientation of a region is random and reflects only that orienta-
tion which happened to be dominant when the region first began to form. To
characterize this developing pattern, we would naturally introduce a correl-
ation function, the moment–moment correlation function

Gð~rÞ ¼ ~mð0Þ �~mð~rÞh i; ð4:28Þ

which would be zero at very high temperatures (reflecting the random orienta-
tions), but would develop a finite, non-zero value over an extent characterized
by a correlation length x >> a at lower temperatures. Arriving at Tc, we would
observe the correlation span over great distances, comparable to the size of the
system itself. The correlated regions would develop into so-called domains

with a common orientation of the magnetic moment.

r

Jex

Anti-ferromagnetic

Paramagnetic

Ferromagnetic

Figure 4.8 The exchange integral, Jex, varies with separation between neighboring spins. For small separations,

the interaction favors anti-alignment resulting in an anti-ferromagnetic state. Only for a limited

range of larger separations is the ferromagnetic state favored.
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Hysteresis loop

What happens if we now apply an external field to this zero-field cooled speci-
men? Our magnetization would follow a path as illustrated in Fig. 4.10, known as
a hysteresis loop. Our specimen starts off in an unmagnetized state. Although
there exist large domains of uniformly magnetized regions, these domains are
individually oriented in random directions resulting in little or no initial magnet-
ization. As we apply a field, those domains with orientation in the field direction
begin to grow at the expense of other domains. These favored domains expand
their boundaries by converting spins near the periphery of the domain. Conse-
quently, the ill-favored domains shrink away. At some very large appliedfield, the
favored domains have grown to macroscopic proportions and the magnetization
saturates. As the field is then removed, the new domain structure adjusts slightly,
but the favored domains remain dominant due to the internal biasing provided by
the exchange interaction. When the field is completely removed, the finite
magnetization that remains is known as the remanence,MR.
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Figure 4.9 A series of panels illustrating how regions of ordered magnetic moments develop in a

ferromagnet as the system is cooled to the Curie temperature in the absence of any external

magnetic field. Just at the Curie point, the correlation length approaches the system size.

Here the system exhibits no net magnetization, but is composed of many domains each

containing commonly oriented spins.
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In order to de-magnetize the specimen, a reverse field must be applied. In
applying this reversefield, the dominant domains are now shrunkenwhile domains
of opposite orientation (those aligned with the reversed field) begin to grow.
Eventually, a situation is reached at a field of magnitudeHc, known as the coercive
field (or coercivity), where the net magnetization vanishes. Further increase of the
reverse field beyond Hc drives the system again to a state of saturation.

Summary

c Magnetic behavior appears in atoms with a net total (orbital plus spin)
angular momentum, �h~J :

c The permanent magnetic moment of an atom is proportional to J and
appears in units of a Bohr magneton, mB ¼ e=2m.

c All materials exhibit a diamagnetic response. For non-magnetic mater-
ials, the response is observed as a weak magnetization opposite to the
applied field.

c Paramagnets lack any interaction between neighboring moments and
lose their magnetization whenever a field is removed. Ferromagnets
experience an interaction between neighboring moments and can retain
their magnetization if the field is removed at temperatures below the
Curie temperature, Tc.

M

H

MS

MR

HC

  H 

Figure 4.10 The hysteresis loop of a zero-field cooled ferromagnet (solid curve). Dashed line indicates the

initial magnetization caused by an applied field. Applying the field grows favorably aligned

domains at the expense of unfavored domains.
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c The interaction between moments in a ferromagnet arises from a
quantum mechanical interaction between neighboring atomic spins,
uðrijÞ ¼ �2JexðrijÞ~Si �~Sj, known as the exchange interaction.

c Near Tc, ferromagnets develop regions of correlated moments which
increase in size as Tc is approached.

Exercises

4.1. A power transformer consists of two windings around a common ferro-
magnetic core and is used in ac circuits to step up (or down) an ac
voltage. During each cycle, the ferromagnetic core repeats the process of
growing and shrinking domains. (a) Show that the work done in one
cycle of a hysteresis loop equals the area enclosed by the loop. (b) Which
would be better for a power transformer: a core with a large coercivity or
a small coercivity? Why? (Hint: for part (a), you might make use of the
following thermodynamic relation: dW ¼ HdM.)

4.2. Consider the centripetal force on the orbiting electron of the classical Bohr
model illustrated in Fig. 4.3. Consider both a situation with and without a
magnetic field present and show that when the field is present and directed
upwards (perpendicular to the orbital plane), the electron speeds up by
Du � reB=2m, and that the change in its angular velocity then equals the
Larmor frequency given in Eq. (4.9). As a follow-up to this, determine how
large a magnetic field is needed to cause a 1% change in the orbital speed.

4.3. In the text, the Tc for iron was estimated to be only about 3 K, based on a
classical molecular field due to the dipolar interaction. Verify this by
direct substitution into Eq. (4.26) using for iron the angular momentum
J ¼ S ¼ 1 and a particle spacing a ¼ 1 Å.

4.4. Compute the diamagnetic susceptibility for a gas of hydrogen atoms (at
standard temperature and pressure). Recall that the ground state wave
function for a hydrogen atom is cðrÞ ¼ pa3ð Þ

�1=2
e�r=a, where

a ¼ �h2=me2 ¼ 0:529A
�
. Note also that r2

	 


¼ x2
	 


þ y2
	 


¼ 2
3 r2
	 


for
a spherically symmetric orbital. Compare your result with the experi-
mental value listed in Table 4.1.

4.5. Obtain the form of the Brillouin function given in Eq. (4.18) starting from

Eq. (4.15). By way of a hint, notice that:

P

memx

P

emx
¼

d

dx
ln

X

emx
� �n o

.

4.6. Consider the simple two-state paramagnet with J ¼ S ¼ 1/2. Show that
for such a paramagnet, the magnetization is given simply as:
M ¼ nmB tanhðmBB=kBTÞ. Using this result, determine the magnitude
of magnetic field required to produce a magnetization of half its satur-
ation value at (a) 300 K and (b) 1 K.
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Suggested reading

Chaikin and Lubensky provide additional depth on the subject of correlations, but at an

advanced level that might not appeal to all. For a good introduction to magnetic

materials I recommend reading the sixth chapter of Griffiths.

D. J. Griffiths, Introduction to Electrodynamics, 3rd Ed. (Prentice Hall, New Jersey,

1999).

P.M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge

University Press, New York, 2003).

C. Kittel, Introduction to Solid State Physics, 8th Ed. (John Wiley and Sons, 2005).
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PART II

SCATTERING

Most of the light that enters our eyes has been scattered and when we see

objects we see them because of the diffuse scattering of light they produce.

Even the sky is blue because of how it scatters sunlight. But scattering is also

an important mechanism for observing very small objects. As a classic

example, recall how Lord Rutherford unveiled the internal structure of the

atom by studying the scattering pattern of alpha particles directed at gold

atoms. The abnormally large number of particles backscattered by these gold

atoms pointed to the existence of a small, but very dense, center which we now

refer to as the nucleus.

In the next chapter, we develop the basic framework for the scattering of

waves by condensed matter by looking at how electromagnetic waves scatter

from the electrons contained in the particles. Although this is strictly relevant

only for the scattering of X-rays and visible light, much of the formalism that

develops will apply equally to other waves, including particle waves (electrons

or neutrons) that interact with things other than electrons. In the following

chapter (Chapter 6), we look at how X-rays scatter from crystals. There we will

find scattering that is reminiscent of how visible light is scattered by a diffrac-

tion grating in that the scattered radiation exits as a set of discrete beams. This

discrete (Bragg) diffraction is contrasted in Chapter 7 by the continuous pattern

of scattering produced by glasses or liquids.

In the final chapter on scattering (Chapter 8), we examine how waves of a

longer wavelength can be used to study structures of a larger extent. These

include liquid crystals, whose symmetry is intermediate between those of

crystals and liquids, and notable self-similar (i.e. fractal) objects such as

polymers and aggregates.





5 Scattering theory

Introduction

In this chapter we develop a general formalism to describe the scattering of waves
by a large systemof particles and show that the scattering pattern relates directly to
the structural arrangement of the particles. We develop this formalism using the
specific example of light waves, composed of oscillating electromagnetic fields.
But, in principle, the waves could represent any wave-like entity including matter
waves such as traveling electrons or neutrons. The characteristic scattering pattern
is known as the static structure factor, and it results from the collective interfe-
rence ofwaves scattered by particles in the system. This interference is sensitive to
the relative separation between the particles, and the static structure factor is
shown to be just a spatial Fourier transform of the particle structure as it is
represented by the density–density correlation function.

5.1 The dipole field

All condensed matter is constructed of atoms that contain nuclei and electrons.
The nuclei reside at the atom center and the electrons, while bound up in the
atom, orbit about the nucleus at a relatively large distance under the attraction
of a Coulomb force. In considering the interaction of an atom with an external
electric field, we know that both the electron and the nucleus experience
opposing forces owing to their opposite charge. However, because neutrons
and protons are about two thousand times more massive than the electron, we
can largely disregard any disturbances in the location of the nucleus and
instead focus on the motion of electrons alone.

To a reasonably good approximation, we can treat an electron in an atom as
a negatively charged particle with mass m attached by a spring to a rigid
nucleus. The spring constant can be expressed in terms of the natural, or
resonant, frequency, oo, as mo2

o. For convenience, we place the electron at
the origin of a coordinate system, as shown in Fig. 5.1, where it experiences
the effects of an incoming electromagnetic wave,

~Ei ¼ Eoẑe
i~k i�~r�iot; ð5:1Þ
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where ki ¼ 2p=l is the wave vector and o the angular frequency of the
incident wave. We will take the wave to be polarized along the z-axis. At the
origin, the electron experiences a periodic driving force

~Fdriving ¼ �eEoe
�iot ẑ; ð5:2Þ

and if we assume that the incident electromagnetic wave is sufficiently weak
that it produces only small displacements of the electron without ionizing the
atom, then its motion is described by Newton’s second law as

m
d2z

dt2
¼ �mo2

oz� eEoe
�iot: ð5:3Þ

The solution to this equation of motion is of the form z ¼ zoe�iot, where

zo ¼
eEo=mð Þ

o2 � o2
o

� � : ð5:4Þ

As a result of the incident wave, the electron is driven into oscillatory motion
at a frequency o and amplitude zo, and behaves as an oscillating dipole of
dipole moment po ¼ ezo. From electrodynamics, this oscillating dipole radiates
an additional electromagnetic wave outwards from its center, much like a radio
antenna,

~ESð~R; tÞ ¼
�k2i
4peo

po sinf f̂
� � ei

~kS �~R�otð Þ

R

¼ Eo

k2i
4peo

e2=m

o2
o � o2

� � sinf f̂

 !( )

ei
~kS �~R�otð Þ

R
;

ð5:5Þ

where eo is the permeability of free space, and the remaining terms are defined
in Fig. 5.1. Because the electron oscillates at the same frequency with which it

x

z

y

φ

R

nucleus

e

ks

ki

mωo
2

Figure 5.1 Classical model of the interaction of an electromagnetic wave with an electron orbiting a nucleus.

The incident alternating electric field drives the electron to oscillate, thereby emitting dipole

radiation to a detector (located at R).
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is driven, the scattered field exhibits the same wavelength as the incident field.
This sort of scattering event, in which the energy of the incoming and outgoing
photons is the same, is known as elastic scattering.

The field produced by the electron has a donut-shaped profile as a result of
the sine term in Eq. (5.5). Along the z-axis (f ¼ 0), the field vanishes, while in
the xy-plane the field is isotropic. Furthermore, the intensity, which is propor-
tional to the square of the field, decreases as 1/R2, characteristic of a radiating
source. From here on, we will restrict our discussion to observations made in
the xy-plane where the field is isotropic. Here the scattered field from the
electron appears much like the waves in a pond emanating from an oscillating
bobber (see Fig. 5.2).

5.1.1 The scattering cross section

In this development, we have considered only the interaction of matter
with an electromagnetic wave via its disturbance of the electron. The details
of that interaction are contained in the bracketed term in Eq. (5.5),
which can be viewed as a sort of “cross section” for the interaction: a
measure of the strength of the interaction for a given magnitude of incident
field (Eo). For most atoms, the resonant absorption frequencies, oo, reside in
the UV range and hence for X-rays, the frequency of the incident wave is
much larger than resonance (o2 >> o2

o). In this limit, the factor in brackets
reduces to

k2i
4peo

e2=m

o2
o � o2

� � sinf f̂

 !( )

�
�1

4peo

k2i
o2

e2

m
sinf f̂

� �

¼
�1

4peo

e2

mc2
sinf f̂

� �

;

ð5:6Þ

which is independent of the wavelength and consistent with the Thomson

scattering from a free electron. In contrast, for visible light where
o2 << o2

o, the bracketed term reduces to

incoming wave

scattered

wavelets 

e

E = Eoe 
i(ki ⋅r −   t)

ES = Eo {...}
e

i(ks⋅R−   t) 

R

w  

w  

ks 

ki 

Figure 5.2 A view of the scattered radiation along the z-axis of Figure 5.1 showing the formation of spherical

wavelets emanating from the scattering source.
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k2i
4peo

e2=m

o2
o � o2

� � sinf f̂

 !( )

�
1

4peo

k2i
o2

o

e2

m
sinf f̂

� �

¼
p

eo

e2

mo2
o

sinf f̂

� �

1

l2
;

ð5:7Þ

and is seen to vary inversely with the square of the wavelength of the incident
light.

In the case of particle waves, a radiated field similar to that in Eq. (5.5) is
generated. However, the corresponding bracketed term is quite different and
involves elements that describe the cross section for the specific scattering
process. For example, in neutron scattering this bracketed term would contain
details associated with the quantum mechanical interaction of incoming
neutrons with the nuclei of the matter, and the outgoing wave would contain
information regarding the probability for a scattered neutron to be detected.

5.2 Interference

Let us now consider two electrons separated by a distance d, as depicted in
Fig. 5.3. Each radiates a similar field, described by Eq. (5.5), but the separation
necessarily introduces a relative phase shift due to differences in the optical
path length taken to the detector. Thus, when the two fields combine at the
detector, they may constructively or destructively interfere depending on the

d sin 2q = mλ

incoming wave

e

e

d

ESeif

ES

ks

  
ki

2q

Figure 5.3 View of the interference of wavelets emanating from two scattering sources separated by a

distance d. The condition for constructive interference is seen to be that for the optical two-slit

interference pattern. Note the scattering angle (relative to the incident direction) is here defined

to be 2y.
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location of the detector and the separation of the two electrons. Consideration
of Fig. 5.3 reveals that constructive interference will occur when:

d sin 2yð Þ ¼ ml; ð5:8Þ

a condition that should be familiar. It is merely the condition for a double-slit
interference pattern! Here we now begin to see a glimpse of how the scattering
of waves reveals structure in materials. We know when we change the spacing
between these two scattering sources, the interference pattern will change in a
corresponding fashion. If we move the sources together the interference fringes
spread apart and if we move them apart the fringes pack together. This simple
notion is the key to how scattering provides information about the particle
arrangements in condensed matter.

5.2.1 Scattering from a single atom

Alright, now let us add more electrons. We next consider a single atom
containing Z electrons in its orbital shells. We begin first with a crude atomic
model of point electrons in orbit about the nucleus (see Fig. 5.4). Again we see
that, because of the relative locations of the electrons, there will occur phase
differences between the individual fields scattered by each electron such that
the total field viewed at the detector is

Etot
S ¼ ES eif1 þ eif2 þ eif3 þ eif4 þ � � �

� �

ð5:9Þ

incoming wave

  
ki

+

ESeif

e

e

e

e

e

e

  
ks   

ri

2θ

ESeif1

ESeif2

ESeif3

4

ESeif5

ESeif6

Figure 5.4 The cumulative interference of scattering from a collection of electrons contained in an

arbitrary atom.
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Scattering wave vector

We can reference the phase shifts (fi) relative to any fixed point and here we
take that point to be the nucleus of the atom. As shown in Fig. 5.5, the path
length difference of a given electron relative to the nucleus is

Dr1 � Dr2 ¼
~k i �~ri
kij j

�
~ks �~ri
ksj j

: ð5:10Þ

But, because the scattering is elastic, ksj j ¼ kij j ¼ 2p=l the phase difference
can be expressed as

fi 	
2pðDr1 � Dr2Þ

l
¼ ð~ki �~ksÞ �~ri ¼ �~q �~ri; ð5:11Þ

where ~q 	~ks �~ki is the (all important) scattering wave vector. For elastic
scattering, the magnitude of~q is related (see Fig. 5.5) to both the wavelength
and scattering angle, 2y, as

~qj j ¼
4p

l
sin y: ð5:12Þ

Then the net electric field generated by all the electrons in the atom and
observed at the detector is given by

Etot
S ¼ ES

X

i

e�i~q�~ri : ð5:13Þ

Here we see the real utility of the scattering wave vector. It provides a simple
means of keeping track of phase differences based upon relative positions of
the electrons.

q 

2
2 = k sinθ =

2π

λ
sinθθ 

k s

−k i

q 

α2

∆r1

r i

+

α

e

∆r
2

1

k s

  
k i

2q

Figure 5.5 The scattering wave vector,~q 	~ks �~ki , is defined as the vector difference between the

scattered wave vector and the incident wave vector. For the case of elastic scattering, its magnitude

is simply related to the wavelength of the radiation and the scattering angle.
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Atomic form factor

In reality, the electrons in atoms do not present themselves as point charges,
but rather as a distribution in space whose net charge equals e. These electron
clouds that surround the nucleus assume characteristic shapes depending on
the specific electron configuration of the atom, as illustrated in Fig. 5.6. To
accommodate the distributed nature of the electrons we merely need to convert
Eq. (5.13) over to an integration of the electron density, where the fraction of
an electron per unit volume at some position~r from the nucleus is defined as
neð~rÞ. Then Eq. (5.13) becomes

Etot
S ¼ ES

ð

atom

neð~rÞe
�i~q�~rd3~r: ð5:14Þ

Fortunately, the electron cloud distributions are the same for any atom of
a given element and others have computed this atomic scattering for us.
These are commonly provided as so-called atomic form factors, f ð~qÞ,
defined as a ratio of the total scattered field relative to that of a single
electron,

f ð~qÞ 	
Etot
S

ES

¼

ð

atom

neð~rÞe
�i~q�~rd3~r: ð5:15Þ

Examples of f ð~qÞ for a few atoms are shown in Fig. 5.7. Note that in the limit
that q approaches zero (forward scattering direction), f ð~qÞ approaches the
number of electrons, Z. This occurs because all the phases in Eq. (5.13) vanish
in the forward direction (~q ¼ 0), leading to a scattered field that is just Z times
that of a single electron.

r 

ne(r )

d3r = dx dy dz

+

incoming wave

ES f (q )ks

ki 

Figure 5.6 Unlike the illustration in Figure 5.4, electrons in an atom present themselves not as point

scattering sources but rather as an electron number density, neð~rÞ, distributed about the nucleus

in a manner that depends upon the electronic configuration. The collective interference of waves

scattered by the electron distribution is characterized by the atomic form factor obtained by

integrating over the atom as in Eq. (5.15).
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5.3 Static structure factor

Finally, we proceed to the scattering from a collection of particles. Here,
“particles” is a generic term for the objects that make up our condensed matter.
The particles could be atoms, as depicted in Fig. 5.8, that each individually
scatter a field given by the appropriate atomic form factor defined in Eq. (5.15).
Alternatively, the particles could be any object containing a distribution of
electrons described by some appropriate particle form factor that individually
scatters as

ES;i ¼ ES fið~qÞ: ð5:16Þ

In any event, the particles in our collection have different relative positions and
so interference again arises at the detector between the fields scattered by each
particle. Once more, we can track the phase differences using the scattering
wave vector and describe the detected field as

Etot
S ¼ ES

X

particles

fið~qÞe
�i~q�~ri ; ð5:17Þ

where~ri is the position of the center of the ith particle.
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Figure 5.7 Variation of the atomic form factor for selected atoms as a function of the scattering wave

vector~q. Overall, the form factor is proportional to the number, Z, of electrons in the

atom and approaches Z as~q approaches zero. (Data from Cullity (1978).)
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In scattering experiments, one generally detects not the electric field, but the
intensity, which is proportional to the square modulus of the electric field. This
is also true for neutron scattering. One does not detect the neutron wave
function, but rather the probability for observing a neutron, which is propor-
tional to the square of the wave function. For light waves, the intensity is

IS ¼ Etot
S

�

�

�

�

2
¼ ESj j2

X

i

fið~qÞe
�i~q�~ri

 !

X

j

fjð~qÞe
�i~q�~rj

 !


: ð5:18Þ

For the time being, let us assume that all our particles are identical with
identical form factors. Then,

IS ¼ Etot
S

�

�

�

�

2
¼ ESj j2 f ð~qÞj j2N

1

N

X

i

X

j

e�i~q�ð~ri�~rjÞ

( )

¼ ESj j2 f ð~qÞj j2NSð~qÞ;

ð5:19Þ

where the static structure factor, is defined by

Sð~qÞ ¼
1

N

X

i

X

j

e�i~q�ð~ri�~rjÞ

* +

: ð5:20Þ

Again, the angled brackets indicate an average taken over appropriate ensem-
bles of the structure.

5.3.1 A relevant scattering length scale

What is S(q)? It is an overall measure of the effect of phase differences in the
scattered field arising from the relative separation of the particles, regardless of

ri 

x

y

z

ki

ks

ES fi

ESfi

ESfi
ES fi

Figure 5.8 The collective interference from all of the electron density in a collection of particles can be

reduced to the interference due to the relative positions of the particles themselves, each particle

scattering as though it were a point particle. The scattering from each particle is however modulated

in q by its internal electron structure, as conveyed by the particle form factor.
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the sort of waves used in the scattering experiment. In this regard, the scatter-
ing wave vector plays a pivotal role. The inverse of the scattering wave vector
represents a relevant scattering length scale, l ¼ 2p=q, whose size in compari-
son to the mean particle spacing dictates the severity of the interference effects.
This is illustrated in Fig. 5.9, where three different regimes are displayed.

When the scattering length scale is large compared to the size of the system
of scatterers, such as when visible light (q�1 � l � 5000A

�
) scatters from a

smaller-sized collection of particles, the phase differences, ~q � ð~ri �~rjÞ,
between neighboring scattered waves are nearly identical and result in con-
structive interference:

Sð~qÞ 	
1

N

X

i;j

e�i~q�ð~ri�~rjÞ

* +

�
N2

N
¼ N : ð5:21Þ

Conversely, when the scattering length scale is small compared to the particle
spacing, the phase differences,~q � ð~ri �~rjÞ, between waves scattered by neigh-
boring particles are randomized and produce

Sð~qÞ 	
1

N

X

i;j

e�i~q�ð~ri�~rjÞ

* +

�
N

N
¼ 1: ð5:22Þ

It is only when the scattering length scale is comparable to the particle spacing
that large variations in the phase difference occur to produce significant

∆r

q −1<< ∆r

I ∝ N ES

2
f (q )

2

S(q ) ≈
N

N
≈ 1

q−1 >> system

I ∝ N 2 ES

S (q ) ≈
N 2

N
≈ N

q −1≈ ∆ r

I ∝ N ES
2

f (q )
2
S (q )

∆r ∆r

(a) (c)(b)

f (q ≈0)
2 2

Figure 5.9 Three significant regimes are illustrated for S(q) depending on the particle spacing in relation to

the scattering length. (a) When the scattering length is much larger than the collection of particles,

interference appears as a sum of nearly equivalent phases for which S(q) is proportional to

the number of particles. (b) When the scattering length is comparable to the particle spacing

there are significant angular variations to the scattered intensity. (c) When the scattering length

is much smaller than the particle spacing, the phases arrive randomized and interference leads

to S(q) � 1 with the q-dependence entering only from the particle form factor.

78 Scattering theory



angular variations in the scattered field, that are associated with the relative
positions of the particles. Hence, the scattering wave vector (specifically its
inverse) sets an important scale for examining the structure and must be chosen
to correspond to the particle separations of interest. X-ray scattering operates
on an Ångstrom scale and so probes particles roughly 1Å apart. Visible light
operates on nearly a micron scale and so probes “particles” of a much larger
size with correspondingly larger separation. Neutrons possess a range of
scattering length scales that depend upon the temperature at which they are
moderated (Ex. 3).

5.3.2 A Fourier relationship: the density–density
correlation function

Before leaving the subject of scattering, we emphasize an important relation-
ship between the spatial structure of matter and the angular pattern of the
scattering that arises. As it turns out, the two are related by a Fourier
transformation. To demonstrate this, we begin by exploiting the properties
of Dirac delta functions, to replace the argument of the double summation in
Eq. (5.20) by

e�i~q�ð~ri�~rjÞ ¼

ð

d3~r1

ð

d3~r2dð~r1 �~riÞdð~r2 �~rjÞe
�i~q�ð~r1�~r2Þ; ð5:23Þ

allowing the structure factor to be expressed as,

Sð~qÞ ¼
1

N

ð

d3~r1

ð

d3~r2
X

i

X

j

dð~r1 �~riÞdð~r2 �~rjÞ

* +

e�i~q�ð~r1�~r2Þ: ð5:24Þ

Since the density of particle centers can be expressed as a sum of Dirac delta
functions,

nð~rÞ ¼
X

i¼1;N

dð~r �~riÞ; ð5:25Þ

we can write,

Sð~qÞ ¼
1

N

ð

d3~r1

ð

d3~r2Cð~r1;~r2Þe
�i~q�ð~r1�~r2Þ; ð5:26Þ

where

Cð~r1;~r2Þ 	 nð~r1Þnð~r2Þh i ¼
X

i¼ 1;N

X

j¼ 1;N

dð~r1 �~riÞdð~r2 �~rjÞ

* +

ð5:27Þ

is known as the density–density correlation function. Its description as a
“correlation” function can be seen in Eq. (5.27) and Fig. 5.10, where there
are two “search vectors”~r1 and~r2 that cause a correlation in Cð~r1;~r2Þ to light

rj

r2

x

y

z

r1

?

?
ri 

Figure 5.10

The density–density correlation

function is defined by a set

of search vectors (~r1 and~r2)

searching for correlations as

evidenced by the presence

of particles located at both

~ri and~rj .
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up only when each happens to point to the center of the same particle, or
two different particles. Equation (5.26) thus conveys the following important
mantra: the angular pattern of scattered radiation described by the static
structure factor is merely a (double) Fourier transform of the structure of the
material, as described by its density–density correlation function. In practical
terms, this means that if the spacing between particles is frequently some value
Dr, a corresponding peak will occur in a S(q) near q � 2p=Dr.

Summary

c The structure of matter is assessed by the interference of the waves
it scatters.

c The interference pattern caused by a collection of point scatterers is
described by the static structure factor, Sð~qÞ.

c In scattering experiments, the inverse of the scattering wave vector,
~q, sets a relevant length scale at which structural features are probed.

c The static structure factor is a Fourier transform of the density–density
correlation function which describes the particle positions in matter.

Exercises

5.1. Estimate the range of q for both X-rays (l¼ 0.7 Å) and visible light
(l ¼ 5000 Å) for a typical range of scattering angles 2� < 2y < 180�.

5.2. Returning to the oscillating dipole model for a single electron, consider
an alternate case in which the electron experiences a damping force of
the form ~Fdamp ¼ �g dzdt ẑ. Show in this instance that the amplitude of
oscillations is given by the complex quantity

z
o ¼
eEo=m

o2 � o2
o þ iog=m

� � ;

whose real part is

Re z
o
� �

¼
eEo=m o2 � o2

o

� �

o2 � o2
o

� �2
þ og=mð Þ2

� � :

5.3. In a neutron scattering experiment, an incident beam of neutrons is
rendered nearly monochromatic by having the neutrons first achieve
thermal equilibrium in a moderator gas maintained at a temperature T.
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(a)What de Broglie wavelength would a room temperature (300K) neutron
have? (b) What temperature of moderator would be required to produce
neutrons with a de Broglie wavelength near that of visible light (5000Å)?

5.4. Consider a 1D chain of atoms with spacing a that alternates between two
atom types (A and B) with form factors fA and fB, respectively. An X-ray
beam is incident with ~ki perpendicular to the chain. (a) Show that the
constructive interference condition is ml ¼ 2acosf, where f is the angle
between the diffracted beam and the line of atoms. (b) Show that for m odd
the intensity of the diffracted beam is proportional to fA � fBj j2, while form
even it is proportional to fA þ fBj j2. (c) Explainwhat happens to the intensity
of the diffracted beam when all of the B atoms are replaced with A.

5.5. Three identical scattering particles are arranged in a straight line along
the z-axis and separated by a common distance a. A plane wave is
incident on the arrangement with ~ki ¼ 2p=lð Þŷ. (a) Compute the static
structure factor in the scattering plane and show that it can be expressed
as: SðqÞ ¼ 1

3 1þ 4 cosfþ 4cos2f
� �

, where f ¼~q � aẑ. (b) If the
spacing a equals the wavelength of the incident wave, list the scattering
angles (2y) for which S(q) is maximum.

5.6. Show that, for a spherically symmetric electron distribution, the form factor

given in Eq. (5.15) can be expressed as f ð~qÞ ¼ 4p
Ð

atom
r2neðrÞ

sin qr
qr

h i

dr.

5.7. The electron number density for a hydrogen atom is given by the square of

its ground state wave function as neðrÞ ¼ cðrÞj j2 ¼ 1

pa3o
e�2r=ao , where ao

is the Bohr radius. Show that the form factor is fH ðqÞ ¼ 16=ð4þ ðqaoÞ
2Þ2.

5.8. Imagine a spherical scattering particle of radius R with a uniform
density, no. Show that the particle’s form factor is fsphereðqÞ ¼

4pno
q3

sin qR� qR cos qR½ �.

Suggested reading

Griffiths is a good source for better understanding the origin of the dipole scattering

which is presented rather abruptly as Eq. (5.5). The structure factor is developed in

many of the other references. Beware though that it may appear differently depending

on how it is defined and normalized.

D. J. Griffiths, Introduction to Electrodynamics, 3rd Ed. (Prentice Hall, New Jersey, 1999).

G. Strobl, Condensed Matter Physics (Springer-Verlag, Berlin, 2004).

P.M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge

University Press, New York, 2003).

H. C. van de Hulst, Light Scattering by Small Particles (John Wiley and Sons,
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6 Scattering by crystals

Introduction

In the previous chapter, we developed scattering theory and introduced the
static structure factor as the Fourier counterpart to the density–density correl-
ation function for particle arrangements in a solid. In that sense, the static
structure factor measures how recurrent a given particle spacing is within the
material. In this chapter, we consider the scattering of waves by an ordered
crystal and establish the foundations of conventional crystallography, based
upon Bragg diffraction from crystal planes defined by Miller indices. Here we
show that the extremely periodic pattern of particle positions necessitates a
discrete set of Fourier components and that scattering occurs only in a discrete
set of scattering directions. Furthermore, the set of scattering wave vectors, q,
associated with these limited allowed scattering directions form an important
lattice in wave vector space, known as the reciprocal lattice. In later chapters
we will repeatedly encounter this reciprocal space as an important consider-
ation for the properties of any wave that travels within a crystal.

6.1 Scattering by a lattice

As discussed in Chapter 1, the atoms in a crystal are highly organized and the
overall structure can be reduced to a small group of atoms (the basis set) that
is repeatedly attached to an imaginary space lattice. The space lattice itself
is defined by a set of translation vectors, ~T ¼ h~a1 þ k~a2 þ l~a3, and possesses
translational symmetry in addition to other symmetry properties due to its
repetitive nature. The small group of atoms attached to each unit cell of the
lattice is referenced by a set of basis vectors, ~Ri ¼ xi~a1 þ yi~a2 þ zi~a3, and
these, together with the translation vectors, define the location of each atom
in the crystal.

We now consider how incident waves, namely X-rays whose scattering
length scale best matches the lattice spacing of common crystals, scatter from
the orderly array of atoms found in a crystal. For the moment, we ignore the
fact that these atoms are actually vibrating and pretend instead that they are
fixed in space. Of course, we could treat the atoms as our scattering particles,
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each scattering with an atomic form factor given in Eq. (5.15), and proceed to
compute the static structure factor describing the interference arising from each
and every atom in the crystal. However, the orderly nature of the crystal offers
a practical short cut. Because each unit cell of the space lattice contains exactly
the same small group of atoms, it is far more convenient to treat this small
group of atoms in the unit cell as though they were a single scattering
“particle” that scatters with a collective cell form factor:

fcellð~qÞ ¼
X

basis

fið~qÞe�i~q�~Ri ; ð6:1Þ

where fið~qÞ are the individual atomic form factors for each atom in the unit cell and
~Ri is the set of vectors describing their location. By adopting this choice for
“particles”, the remaining interference of scattered waves now arises from the
relative locations of the lattice points of the space lattice, as is illustrated in Fig. 6.1.

How then does the orderly structure of a crystal affect the structure factor,
S(q) as given in Eq. (5.20)? First of all, the ensemble averaging inherent in
Eq. (5.20) is unnecessary, because any reincarnation of the crystal will appear
exactly identical. There is only one configuration that this ordered system can
assume. Secondly, because the space lattice is ordered, the position of any
lattice site (our “particles”) at ~ri can be accurately referenced to any other
arbitrary lattice site at~ro by the set of translation vectors that define the lattice.
Thus, we can express the structure factor for a crystal as:

Scrystalð~qÞ ¼
1

N

X

i

X

j

e�i~q�ð~ri�~rjÞ ¼ 1

N

X

i

X

j

e�i~q� ~roþ~Tið Þ� ~roþ~Tjð Þ½ �

¼ 1

N

X

i

e�i~q�~Ti

�

�

�

�

�

�

�

�

�

�

2

:

ð6:2Þ

incoming wave

ES fcell(q )

k
s

ki

lattice

Figure 6.1 The collective interference of waves scattered by a crystal can be reduced to the interference

arising from the lattice sites alone, each of which scatters as though it is a point particle

scattering with a form factor, fcell (q), which contains all the interference effects due to contents

of the basis set.
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6.1.1 A set of allowed scattering wave vectors

Where (i.e. at what~q ) does the most intense scattering occur? Intense scattering
corresponds to constructive interference of the scattered waves and in Eq. (6.2)
is seen to occur predominantly for a discrete set of~q ¼ ~Gi for which

~Gi �~Ti ¼ 0; 2p; 4p; � � � : ð6:3Þ

In fact, there is virtually no scattering present at any other scattering wave
vectors! To demonstrate this, let us expand Eq. (6.2) by substituting in the
complete set of translation vectors:

Scrystalð~qÞ ¼
1

N

X

N1�1

h¼0

e�ih ~q�~a1ð Þ
X

N2�1

k¼0

e�ik ~q�~a2ð Þ
X

N3�1

l¼0

e�il ~q�~a3ð Þ

�

�

�

�

�

�

�

�

�

�

2

: ð6:4Þ

Each summation runs over the number of lattice points found along each of the
three crystal axes, and the total number of lattice points equals N ¼ N1N2N3.
As an exercise (Ex. 1), one can show that Eq. (6.4) can be restated in the
following form:

Scrystalð~qÞ ¼
1

N

sinðN1~q �~a1=2Þ
sinð~q �~a1=2Þ

� �2 sinðN2~q �~a2=2Þ
sinð~q �~a2=2Þ

� �2 sinðN3~q �~a3=2Þ
sinð~q �~a3=2Þ

� �2

:

ð6:5Þ

As an illustration of the sharpness of the scattering profile, a plot of the
quantity in the first bracket of Eq. (6.5) is shown in Fig. 6.2 for increasing
values of N1. Notice how the maxima occurring at f ¼~q �~a1 ¼ h2p increase
rapidly with increasing N1, while the region in between the peaks vanishes.

sin(Nφ /2)
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f = 2π

Figure 6.2 Interference pattern due to a one-dimensional chain of N particles. Note the intensity of the maxima

increases as the square of the number of particles, while the total area under each peak remains

constant. Consequently, for large N the peaks are extremely sharp and virtually all of the scattered

intensity occurs only in discrete directions.
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The height of each maximum is proportional to the square of the number of
lattice sites, N2

1 , and the pattern shown in Fig. 6.2 is identical to that of the
intensity of light reflected from a diffraction grating in classical optics. This
equivalence is not coincidental, because the bracketed term describes the
interference of waves by a single line of equally spaced “particles” (unit cells
in this instance), which, in fact, is how a diffraction grating operates.

The Laue conditions

Notice though that S(q) in Eq. (6.5) is a product of three such bracketed terms.
This means that intense scattering from a 3D crystal will require not just one
bracketed quantity to be maximized, but all three bracketed quantities must
simultaneously be maximized. Thus intense scattering is found only when the
three Laue conditions:

~q �~a1 ¼ 2ph

~q �~a2 ¼ 2pk

~q �~a3 ¼ 2pl;

ð6:6Þ

are simultaneously satisfied. If any one of these three conditions is not met for
a given scattering wave vector~q ¼~ks �~ki, then there is no scattering observed
in the corresponding~ks direction.

6.2 Reciprocal lattice

From the discussion above, we conclude that scattering from a crystal will only
occur for a discrete set of scattering wave vectors ~q ¼ ~Gi. We define this
discrete set as

~Gi ¼ ~Ghkl ¼ h~b1 þ k~b2 þ l~b3; ð6:7Þ

where h,k,l are the complete set of integers. In order for this set of scattering
wave vectors to satisfy the Laue conditions in Eq. (6.6), we need

~bi �~aj ¼ 2pdij; ð6:8Þ

where dij ¼ 1 if i ¼ j and dij ¼ 0 if i 6¼ j. A suitable choice for the vectors,~bi,
is then

~b1 ¼ 2p
~a2 �~a3
Vcell

; ~b2 ¼ 2p
~a3 �~a1
Vcell

; ~b3 ¼ 2p
~a1 �~a2
Vcell

: ð6:9Þ

Adopting this notation, the scattering from a crystal can be summarized as:
“intense scattering from a crystal occurs only for those~q that equal any one of
the translation vectors, ~Ghkl, that define the reciprocal lattice”. What is the
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reciprocal lattice? Firstly, it is reciprocal because the vectors that define it in
Eq. (6.9) have dimensions of reciprocal length. But, most importantly, the
reciprocal lattice is a “road map” for the diffraction from the crystal.
The reciprocal lattice is fundamentally related to the original space lattice
and, in fact, is a spatial Fourier transform of it. It details all the allowed~q for
which scattering can possibly occur.

As an example, consider the reciprocal lattice associated with a simple cubic
(SC) space lattice. The lattice vectors of the SC lattice are equal in length and
mutually orthogonal:

~a1 ¼ ax̂; ~a2 ¼ aŷ; ~a3 ¼ aẑ; ð6:10Þ

and so the lattice vectors of the reciprocal space are then given by

~b1 ¼
2p

a
x̂; ~b2 ¼

2p

a
ŷ; ~b3 ¼

2p

a
ẑ: ð6:11Þ

Thus the reciprocal lattice defined by Eq. (6.11) is seen to generate another SC
lattice, but with lattice spacing equal to 2p=a. In a similar manner, one can
demonstrate (Ex. 2 and Ex. 3) that the BCC space lattice transforms into a
reciprocal lattice with an FCC structure, while the FCC space lattice transforms
into a reciprocal lattice with a BCC structure. Thus, if we measure all the
discrete ~q (¼ ~Ghkl) for which intense scattering is observed from the crystal,
we obtain the reciprocal lattice and, in turn, can identify the structure of the
space lattice.

6.3 Crystal planes

6.3.1 Miller indices

One might think that a crystallographer’s order of business then would be to
examine the discrete scattering from a crystal, construct the reciprocal lattice
and finally Fourier transform that to obtain the spatial structure of the crystal.
But this is not the approach adopted by most crystallographers. Instead,
crystallography emphasizes the role of crystal planes in the diffraction process.

Because of its orderly structure, one finds in crystals a number of well-
defined planes formed by lattice points, as illustrated in Fig. 6.3, and crystal-
lographers have developed a useful system for indexing them in terms of
so-called Miller indices, which happen to be just the set of integers h, k and
l introduced earlier. In this indexing scheme, a given crystal plane is labeled by
its set of indices as “(hkl)”. As an example, the (320) planes of a SC lattice
are shown in Fig. 6.3 and the recipe for determining the indices is as follows.
First locate where the plane crosses the three axes of the space lattice. These
are often at some fraction of a lattice spacing. For the example in Fig. 6.3, one
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of the planes shown crosses the~a1 axis at 1~a1, the~a2 axis at ð3=2Þ~a2 and the~a3
axis at infinity. Next, invert these fractions (1/1, 2/3, 0) and multiply by the
least common denominator to obtain a set of integers (h ¼ 3, k ¼ 2, and l ¼ 0).
A view taken down the z-axis shows sequential (320) planes separated by a
fixed distance dhkl, known as the plane spacing. By far, the most prominent
planes for diffraction experiments are the (100), (110) and (111) planes.
Examples of these for the SC lattice are illustrated in Fig. 6.4.

How do these planes play a role in the scattering? The proof is left as an
exercise (Ex. 6), but one can show quite generally that: (1) ~Ghkl is directed
normal to the (hkl ) planes:

Ĝhkl ¼ n̂hkl; ð6:12Þ

and has a magnitude inversely related to the spacing between the (hkl ) planes:

~Ghkl

�

�

�

�

�

� ¼ 2p

dhkl
: ð6:13Þ

To demonstrate the validity of these statements in the absence of a proof,
consider again the (320) planes of the SC lattice discussed in Fig. 6.3. From
Eq. (6.7), the magnitude of ~Ghkl , for a SC lattice is given by

~Ghkl

�

�

�

�

�

�

cubic
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~Ghkl � ~Ghkl

q

¼ 2p

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ k2 þ l2
p

; ð6:14Þ

and the direction is given by

Ĝhkl

� �

cubic
¼

~Ghkl

~Ghkl

�

�

�

�

�

�

¼ hx̂þ kŷþ lẑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 þ k2 þ l2
p : ð6:15Þ

dhkl

dhkl

φ
a/3

a/2

p 

a1

a3 

a2

(320)

a1

a2

Figure 6.3 The (320) planes of a crystal lattice. Upper right-hand figures represent a view of the planes

taken along the~a3 axis.
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For the (320) planes these then predict d320 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32þ22þ02
p ¼ a

ffiffiffiffi

13
p and n̂320 ¼ 3x̂þ2ŷ

ffiffiffiffi

13
p .

From the right-angled triangle shown in Fig. 6.3, the angle f ¼ 56.3� and so

d320 ¼ a sinð56:3Þ
3 ¼ a

ffiffiffiffi

13
p . As for the normal vector, it can be obtained by a cross

product of the vector ~p in Fig. 6.3 with the z-axis. This then results in

n̂320 ¼ ~p�ẑ

~pj j ¼
3x̂þ2ŷ
ffiffiffiffi

13
p , in full agreement with the predictions of Eq. (6.15).

6.3.2 Bragg diffraction

Let us now look at the scattering of waves in relation to the (hkl ) planes of a
crystal. Imagine, as shown in Fig. 6.5a, an incident wave (incident upon a
plane at some arbitrary angle y) and a scattered wave (reflected at some
arbitrary angle f). Since the allowed scattering condition requires the scattered
wave vector,

~q ¼~ks �~ki ¼ ~Ghkl; ð6:16Þ

to match one of the translation vectors of the reciprocal lattice, the direction of
~q must match that of ~Ghkl. This only occurs if the incident and reflected angles
are equal, such that the vector addition of Eq. (6.16) forms an isosceles
triangle. In optics, this is simply known as the law of reflection.
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Figure 6.4 Prominent crystal planes of the cubic lattice.
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In addition, our scattering constraint (Eq. (6.16)) can be rearranged to read

~ks �~ks ¼ ~ki þ ~Ghkl

� �

� ~ki þ ~Ghkl

� �

¼ ~ki

�

�

�

�

�

�

2
þ 2~ki � ~Ghkl þ ~Ghkl

�

�

�

�

�

�

2
; ð6:17Þ

and for the case of elastic scattering ~ks

�

�

�

�

�

� ¼ ~ki

�

�

�

�

�

� ¼ 2p=l
� �

becomes,

~Ghkl

�

�

�

�

�

�

2
¼ �2~ki � ~Ghkl ¼

4p

l
~Ghkl

�

�

�

�

�

� cosð90� yÞ ¼ 4p

l
~Ghkl

�

�

�

�

�

� sin y: ð6:18Þ

Introducing ~Ghkl

�

�

�

�

�

� ¼ 2p=dhkl , we find our scattering condition is simply the
familiar Bragg diffraction law:

l ¼ 2dhkl sin y; ð6:19Þ

illustrated in Fig. 6.5.
A common approach to determination of crystal structure using the Bragg

law is the powder diffraction method. In this technique, a beam of monochro-
matic X-rays is directed at a small specimen of pulverized material, rotated
about an axis. The pulverizing and rotating both serve to position small
crystals at all possible orientations so that any Bragg diffraction that is allowed
will be realized. The intensity of X-rays scattered as a function of the scattering
angle, 2y, is recorded to produce typical powder diffraction patterns, like those
illustrated in Fig. 6.6 for both CsCl and NaCl. Given the incident wavelength
and scattering angle of a Bragg peak, Eq. (6.19) can be used to determine
the spacing of the planes, dhkl, and so identify the corresponding Miller label
(Ex. 7 and Ex. 8).

6.3.3 Missing reflections

We have seen that all~q ¼ ~Ghkl will produce a constructive interference leading
to a maximum in the static structure factor, Scrystalð~GhklÞ ¼ N . However, this
alone does not guarantee that the reflection will be observed. Recall that the
scattered intensity is given by

ISð~GhklÞ ¼ Etot
S

�

�

�

�

2¼ N ESj j2 fcellð~GhklÞ
�

�

�

�

�

�

2
Sð~GhklÞ; ð6:20Þ

and so the intensity also depends upon the specific arrangement of objects
in the unit cell that contribute to the cell form factor, fcellð~GhklÞ. Consider,
for example, CsCl in its SC structure. The basis set consists of a Cl atom
at ~R ¼ 0~a1 þ 0~a2 þ 0~a3 that scatters individually with an atomic form
factor fClð~GhklÞ, and a Cs atom at ~R ¼ ð1=2Þ~a1 þ ð1=2Þ~a2 þ ð1=2Þ~a3
that scatters individually with an atomic form factor fCsð~GhklÞ. Taken
together, each cell of the SC lattice scatters as a “particle”, with a cell
form factor

q k i
k s

−k i

G hkl

θ φ

(a)

(b)
k i k s

G hkl

θ θ

dhkl 2θ

Figure 6.5

(a) The allowed scattering

condition of Eq. (6.16) requires

that~q be parallel with~Ghkl .

Hence, for elastic scattering, the

law of reflection must be

maintained for scattering from

crystal planes. (b) Bragg

scattering of Eq. (6.19) is seen as

the constructive interference of

waves scattered by adjacent

planes, whenever a path

difference equal to any multiple

of the wavelength is introduced.
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fcellð~GhklÞ
� �

CsCl
¼

X

cell

fið~GhklÞe�i~Ghkl �~Ri

¼
X

i

fið~GhklÞ exp �iðh~b1 þ k~b2 þ l~b3Þ � ðxi~a1 þ yi~a2 þ zi~a3Þ
n o

¼ fClð~GhklÞ þ fCsð~GhklÞ exp �ipðhþ k þ lÞf g
ð6:21Þ

If we study reflections from a plane in CsCl for which the sum of the Miller
indices is odd (e.g. the (100) plane), we find that the cell form factor in
Eq. (6.21) is reduced to the difference between the two atomic form factors,
and would vanish completely if the two atomic form factors happened to be
equivalent. The source of this extinguishing effect is readily understood from
a consideration of the interference shown in Fig. 6.7a. Because the Cs atom is
located midway between the (100) planes, its reflected waves suffer only half
the optical path length difference of waves reflected by the Cl, and conse-
quently interfere destructively. By comparison, reflections from the (110)
planes (also shown in Fig. 6.7b), whose sum of indices in Eq. (6.21) is even,
involve planes in which both the Cs and Cl constructively interfere to produce
a maximal cell form factor that is the sum of the two atomic form factors.

By similar reasoning, one finds that certain reflections present in the SC
structure are missing in both the BCC and FCC conventional lattices. The unit
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Figure 6.6 Computer-generated powder diffraction patterns for CsCl and NaCl crystals, with Miller indices listed

for prominent reflections.
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cell of the BCC lattice likewise consists of two lattice points: one at
~R ¼ 0~a1 þ 0~a2 þ 0~a3 and the other at ~R ¼ ð1=2Þ~a1 þ ð1=2Þ~a2 þ ð1=2Þ~a3,
and regardless of the contents of the basis atoms, it produces a cell form factor,

fcellð~GhklÞ
� �

BCC
¼ fbasisð~GhklÞ 1þ expð�ipðhþ k þ lÞÞf g

¼
0 if hþ k þ l is odd

2 fbasisð~GhklÞ if hþ k þ l is even;

� ð6:22Þ

which vanishes whenever the sum of Miller indices equals an odd number.
One can show (Ex. 5) similarly, that for the FCC conventional lattice, the cell
form factor vanishes for those reflections in which the Miller indices are partly
even and partly odd, while constructive interference occurs when the indices
are either all odd or all even integers:

fcellð~GhklÞ
� �

FCC
¼ 0 if h; k; l are partly even=odd

4 fbasisð~GhklÞ if h; k; l are all even=all odd

�

ð6:23Þ

An example of these missing reflections can be seen in Fig. 6.6 for the instance
of NaCl. Note, in each case of constructive interference, the cell form factor is
just the basis form factor multiplied by the number of lattice sites in the
conventional unit cell.

1
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€ 

fCs
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4

fCse
i π

(a)
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(110) planes
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fCl

fCl

Figure 6.7 An analysis of the interference for (a) (100) and (b) (110) planes of CsCl. In the case of the

(100) reflection, the Cs atom is located midway between the planes and thus suffers only a

half-wavelength path difference relative to reflections by Cl atoms. This results in

destructive interference and weakening of the scattered intensity. In the case of the (110)

reflection, both Cs and Cl reside in the plane leading to constructive interference and a

strengthening of the scattered intensity.
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Summary

c The translational symmetry of a crystal results in scattering only at a
discrete set of scattering wave vectors,~q ¼ ~Ghkl .

c The set of allowed scattering wave vectors,~Gi ¼ ~Ghkl ¼ h~b1 þ k~b2 þ l~b3,
forms the reciprocal lattice – a roadmap of allowed Bragg reflections.

c The integers (h, k and l ) are also known as theMiller indices and define

certain crystal planes with spacing dhkl ¼ 2p= ~Ghkl

�

�

�

�

�

�, from which the

allowed reflections are described by Bragg’s law, l ¼ 2dhkl sin y.

c Scattering from a crystal depends not only on the Sð~qÞ of the space
lattice, but also on the contents of the conventional unit cell whose
form factors may cancel. In some instances, an allowed reflection for
Sð~qÞ may be absent.

Exercises

6.1. Derive Eq. (6.5) starting from Eq. (6.4).
6.2. Show that the reciprocal space of the BCC lattice forms a FCC lattice.
6.3. Show that the reciprocal space of the FCC lattice forms a BCC lattice.
6.4. The primitive cell of the hexagonal lattice can be defined by the

following lattice vectors:

~a1 ¼
ffiffiffi

3
p

a

2
x̂þ a

2
ŷ; ~a2 ¼ �

ffiffiffi

3
p

a

2
x̂þ a

2
ŷ; ~a3 ¼ cẑ:

(a) Show that the volume of the primitive cell is
ffiffi

3
p

2 a2c.
(b) Determine the corresponding lattice vectors describing a primitive

cell of the reciprocal lattice and demonstrate that the hexagonal
lattice is its own reciprocal (aside from a rotation).

6.5. Show that the cell form factor of the FCC lattice is given as in Eq. (6.23).
6.6. For any arbitrary (hkl ) plane in a crystal lattice: (a) Prove that

~Ghkl ¼ h~b1 þ k~b2 þ l~b3 is perpendicular to the plane. (b) Prove that the
separation between any two adjacent planes is dhkl ¼ 2p= ~Ghkl

�

�

�

�

�

�.
6.7. Students have conducted a powder diffraction experiment on iron in a

phase known to be cubic. Their X-ray source was the CuKa radiation
emitted from an X-ray tube at 1.542 Å and strong peaks were observed at
the angles listed in the table below.
(a) Compute the interplanar spacing corresponding to each reflection.
(b) Determine the values of hkl for each reflection by seeking the

(common) lattice parameter for this Fe crystal.
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(c) Specify whether the crystal structure is SC, FCC or BCC and
justify your answer.

6.8. In Fig. 6.6 of the text, the powder diffraction patterns of CsCl and NaCl
are presented with their major reflections labeled by corresponding
Miller indices. Determine from the figures the lattice spacing for each
crystal. Based on the reflections present, explain how the measurements
confirm that CsCl is SC and NaCl is FCC.

6.9. Figure 6.8 shows two crystal planes within a unit cell near the origin.
Determine the Miller indices for each plane.

6.10. Figure 6.9 shows two crystal planes within a unit cell near the origin.
Determine the Miller indices for each plane.

6.11. Sketch within a cubic unit cell the following planes:
(a) (011), (b) (112), (c) (122), (d) (131), (e) (013)

6.12. Consider the cubic lattices of SC, BCC and FCC with a monatomic basis
of atoms. For each of these lattices, determine the number of atoms per
unit conventional cell that would be found within the (a) (100), (b) (110)
and (c) (111) planes. As an example, for the FCC structure the (110)
planes are shown in Fig. 6.10 (top view) and are seen to contain a total of
two atoms per cell.

6.13. Consider the scattering of X-rays by a diamond crystal. Although the
FCC cell of which the diamond structure is composed permits reflections
only when hkl are all even or all odd, the basis set of atoms in the
diamond unit cell can interfere so as to still cancel a reflection. Determine
and list (in order of increasing h, k and l) the first five sets of hkl for
which this cancellation due to the basis contents will occur.

2u dhkl a (hkl)

44

64

82

x

z

y

1
2

1
2

1
2

1
3

1
2
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B

Figure 6.8
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Suggested reading

Almost any optics textbook would have a development of the intensity pattern for a

diffraction grating. I only list here the text by Hecht and Zajac with which I am most

familiar. Cullity’s textbook is an excellent source for experimental X-ray diffraction

techniques, including powder diffraction and the analysis of diffraction patterns.

E. Hecht and A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974).

B.D.Cullity,Elements of X-rayDiffraction, 2ndEd. (Addison-Wesley,Reading,Mass, 1978).

C. Kittel, Introduction to Solid State Physics, 8th Ed. (John Wiley and Sons, 2005).
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7 Scattering by amorphous matter

Introduction

In contrast to the sharp, discrete scattering that occurs in crystals as a result of
their perfect periodicity, amorphous materials possess a distribution of particle
spacings and display scattering that is far more continuous as a function of the
scattering wave vector. In this chapter, we explore in detail the relationship
between the structure factor of a liquid or glass and the corresponding short-
range order described by the pair distribution function introduced in Chapter 2.
We demonstrate that S(q) is (mostly) a Fourier transform of the pair distribu-
tion function. Thus again, prominent features of the static structure factor point
to recurrent particle spacings present in the material, and provide vital experi-
mental clues to the short-range order.

In this chapter, we also look at how visible light is scattered by liquids and
glasses. Unlike X-rays that probe mainly the short-range order resident over
just a few coordination layers, the larger wavelength of visible light makes it
sensitive to larger-scaled density variations caused by thermal fluctuations.
In this alternative scattering regime, the pattern of density fluctuations is
described by the van Hove correlation function which, again, is related to S(q)

by a Fourier transform.

7.1 The amorphous structure factor

In the last chapter, we saw how discrete symmetry of the ordered state gave
rise to a discrete set of scattering conditions. What happens when this discrete
symmetry is absent as it is in the case of an amorphous solid? We begin again
with our general statement of the structure factor in Eq. (5.26).

Sð~qÞ ¼
1

N

ð

d3~r1

ð

d3~r2Cð~r1;~r2Þe
�i~q�ð~r1�~r2Þ; ð7:1Þ

involving the density–density correlation function,

Cð~r1;~r2Þ 	 nð~r1Þnð~r2Þh i ¼
X

i¼1;N

X

j¼1;N

dð~r1 �~riÞdð~r2 �~rjÞ

* +

; ð7:2Þ
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with its two sampling vectors~r1 and~r2, whose function is to search space for
the locations of particle centers. Unlike the crystal situation, repeated reincar-
nations of the amorphous structure of a glass will not be exactly the same and
so the ensemble averaging in Eq. (7.2) must be retained. Let us suppose ~r1
happens to find a particle. What conditions apply for which~r2 will also locate a
particle? Recall in Chapter 2 that the structure of amorphous matter is rota-
tionally invariant and can be characterized by the pair distribution function g(r)
which describes the average local density a distance ~r from any arbitrary
particle center. Because of this rotational invariance, the precise vectors~r1 and
~r2 are not as relevant as is their difference,~r ¼~r1 �~r2. Making this change in
Eq. (7.1), we can express the structure factor of an amorphous solid as

SglassðqÞ ¼
1

N

ð

d3~re�i~q�~r

ð

d3~r2
X

i

X

j

dð~r þ~r2 �~riÞdð~r2 �~rjÞ

* +

: ð7:3Þ

Next, we will separate out those terms in the double summation which refer to
the same particle,

SglassðqÞ ¼
1

N

ð

d3~r
X

i;j
i 6¼j

ð

d3~r2dð~r þ~r2 �~riÞdð~r2 �~rjÞ

* +

e�i~q�~r

þ
1

N

ð

d3~r
X

i

ð

d3~r2dð~r þ~r2 �~riÞdð~r2 �~riÞ

* +

e�i~q�~r;

ð7:4Þ

and apply the properties of the Dirac delta function to obtain,

SglassðqÞ ¼
1

N

ð

d3~r
X

j

X

i
i6¼j

dð~r � ð~ri �~rjÞÞ

* +

e�i~q�~r þ
X

i

ð

d3~rdð~rÞe�i~q�~r

8

>

<

>

:

9

>

=

>

;

:

ð7:5Þ

The second integral above is just the Fourier transform of a Dirac delta
function, which equals unity. The first integral contains a double sum in which
a sampling vector (~r) is compared against a separation between two particles.
However, because the system is rotationally invariant, the double sum is
unnecessary. Consider the second summation (running over i). If we pick
some arbitrary particle at~rj ¼~ro, the sum over all other particles (~ri) should
on average appear the same, regardless of the particular particle chosen for~ro.
Hence the double sum is just N times the average quantity for a single sum in
which the search vector ~r is compared to the distance from an arbitrarily
chosen central particle at~ro:

SglassðqÞ ¼
1

N

ð

d3~rN
X

i
i6¼o

dð~r � ð~ri �~roÞÞ

* +

e�i~q�~r þ N

8

>

<

>

:

9

>

=

>

;

: ð7:6Þ
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Consider this single summation. It looks like the expression of a density in
terms of a summation of Dirac delta functions, but one in which distances are
measured relative to an origin fixed on a central particle and one in which the
density of the central particle itself is excluded. This ensemble-averaged
quantity is in fact the average radial density defined by the pair distribution
function, g(r), that was introduced in Chapter 2:

X

i
i6¼o

dð~r � ð~ri �~roÞÞ

* +

¼ nð~rÞh iexcl ¼ nh igð~rÞ: ð7:7Þ

Thus the structure factor for an amorphous solid can be expressed as

SglassðqÞ ¼ 1þ nh i

ð

d3~rgðrÞe�i~q�~r; ð7:8Þ

where it is seen that, aside from an isotropic (i.e. q-independent) contribution,
S(q) in an amorphous system is just a Fourier transform of the pair distribu-

tion function. In practical terms, this means that prominent particle spacings
present in g(r), such as the nearest neighbor distance, Dr ¼ 2b, will appear as a
prominent peak in S(q) near q � 2p=Dr.

7.1.1 Equivalence for liquids and glasses

Although Eq. (7.8) is developed for an amorphous solid, it applies equally
well for the time-averaged scattering from a liquid. In a liquid, the particles
are in motion and the instantaneous scattering varies in time. This time-
dependent variation in the scattered intensity contains important information
regarding the dynamics, which will be discussed in a later chapter concerning
the so-called dynamic structure factor. However, when the scattered intensity
is averaged over time, the reincarnations of the structure driven by the
particle motions appear to be identical to ensemble averages, and the
resulting angular dependence of the scattering from a liquid is given by a
static structure factor:

SliquidðqÞ ¼ SglassðqÞ ¼ SamorphðqÞ ¼ 1þ nh i

ð

d3~rgðrÞe�i~q�~r; ð7:9Þ

identical to that for the glass.

7.1.2 Investigating short-range order

Suppose we are interested in understanding the short-range order (i.e. features
inherent in the first few peaks of g(r) that correspond to the first few coordin-
ation shells) of a glassy solid such as amorphous germanium. These features
correspond to particle separations comparable in size (r ¼ b) to the particles
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themselves and so an appropriate scattering wave vector would be q�1 � b,
such as obtained with X-rays or neutrons. We could then direct a beam of, say,
X-rays at the glass and study the scattering intensity as a function of the
scattering angle. An example of the resulting spectrum for germanium is
shown in Fig. 7.1, which displays a series of undulations superimposed on
the atomic form factor of Ge.

To obtain g(r), Eq. (7.8) instructs that we compute the inverse Fourier
transform of SðqÞ � 1½ �= nh i. But before we do this, let us first recognize that
Eq. (7.8) can be expressed alternatively as,

SamorphðqÞ ¼ 1þ nh i

ð

d3~r gðrÞ � 1½ �e�i~q�~r þ nh i

ð

d3~re�i~q�~r; ð7:10Þ

where we have both subtracted and added unity to the pair distribution function.
The second integral involves the Fourier transform of unity that equals a Dirac
delta function,

SamorphðqÞ � 1 ¼ nh i

ð

d3~r gðrÞ � 1½ �e�i~q�~r þ nh ið2pÞ3dð~qÞ; ð7:11Þ
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Figure 7.1 (a) X-ray scattering from thin film of amorphous germanium produces a series of ring fringes.

(b) The fringe intensity, as a function of q, is seen to be comprised of undulations caused by relative

atomic positions superimposed on the atomic form factor of Ge (dashed curve). Note the changes in

vertical scale at large q. (Adapted from Temkin, Paul and Connell (1973).)
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and corresponds to radiation “scattered” into the forward direction – a direction
that is not accessible for our X-ray experiment because of the large amount of
unscattered beam that also exits at that location. Aside from this forward
scattering which is often blocked by a finite-sized beam stop, we can now
express g(r) in terms of the inverse Fourier transform,

gðrÞ � 1 ¼ 2pð Þ�3
nh i�1

ð

d3~q SamorphðqÞ � 1
� �

eþi~q�~r: ð7:12Þ

Since this is an integral over q-space, we are free to set~r along any direction.
For convenience, let us set it along the z-axis of a spherical coordinate system.
Then one can show (Ex. 2) that

gðrÞ � 1 ¼ 2pð Þ�3
nh i�1

ð

2p

0

df

ð

1

0

ð

p

0

eþiqr cos y sin ydy SamorphðqÞ � 1
� �

q2 dq

¼ 2pð Þ�2
nh i�1

ð

1

0

SamorphðqÞ � 1
� �

q2
2 sin qr

qr


 �

dq:

ð7:13Þ

The radial distribution function is then obtained as,

4pr2 nh igðrÞ ¼ 4pr2 nh i þ
2r

p

ð

1

0

q SamorphðqÞ � 1
� �

sin qr dq; ð7:14Þ

of which an example for amorphous germanium is shown in Fig. 7.2. Note
in this figure, that the most prominent spacing is the nearest neighbor
separation given by the first peak near 2b � 2.5Å. This prominent spacing
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Figure 7.2 Radial distribution function of thin film of amorphous germanium obtained by Fourier

transformation of Figure 7.1. (Adapted from Temkin, Paul and Connell (1973).)
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is seen to correspond closely with the first peak in S(q) in Fig. 7.1 occurring
near q � 2p=Dr � 2 Å�1.

7.1.3 Rayleigh scattering

There is in Eq. (7.8) a curious q-independent, or isotropic, contribution to the
static structure factor in amorphous materials, known as the Rayleigh scattering.
This contribution is seen to arise from our separation (in Eq. (7.5)) of the terms in
S(q) that involve interference (purely constructive interference) of a particle with
itself. In Fig. 7.1, this Rayleigh contribution is indicated by the dashed line that
falls off with increasing q. Why is it not q-independent here? Note that Fig. 7.1
represents the intensity of scattering, which if we recall from Chapter 5 is given as

IS ¼ Etot
S

�

�

�

�

2
¼ ESj j2 f ðqÞj j2NSðqÞ; ð7:15Þ

and includes any inherent q-dependence of the scattering cross section ( ESj j2)
or of the particle form factor, f ðqÞ. For the q range of an X-ray experiment,
f ðqÞ exhibits considerable q-dependence, and the dashed line in Fig. 7.1 is just
seen to be proportional to f ðqÞj j2 for a Ge atom.

But suppose we examined an alternative q range, like that of visible light,
for which q � 0 in Fig. 7.1 and f ðqÞ � constant. Suppose we had an ideal gas
of germanium (or any other small particles) and directed a visible laser beam
into it. The particles of an ideal gas are in constant motion, zipping about
making elastic collisions with other particles. If we take one particle as a
central particle and compute the pair distribution function over many ensem-
bles, we will find that the probability of finding a second particle at any
distance from our central particle is just that associated with the average
density of the gas. Thus, g(r) �1 for all r outside the radius of our central
particle, and from Eq. (7.8), the scattered intensity,

IS ¼ Etot
S

�

�

�

�

2
¼ ESj j2 f ðq � 0Þj j2N 1þ nh ið2pÞ3dð~qÞ

n o

; ð7:16Þ

reduces (aside from scattering in the forward direction) to only the Rayleigh
contribution: an isotropic scattering with magnitude proportional to the
number of scattering particles and the scattering cross section, ESj j2. Further-
more, we saw in Chapter 5 that the cross section for visible elastic scattering
(Eq. (5.7)) differs from that for X-rays in that it varies as

ESj j2/ l�4; ð7:17Þ

and so preferentially scatters light with shorter wavelengths.

Blue skies and red sunsets

All of this leads up to an explanation for why the sky on Earth is blue while the
lunar sky (that seen if you were on the moon) is black. The origin for this
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difference is the atmosphere that surrounds the Earth, but which is absent on
the Moon. We can now understand the blueness of our sky as a consequence of
Rayleigh scattering of sunlight by the atoms in our atmosphere, as illustrated in
Fig. 7.3. Incident light from the sun contains a broad spectrum of wavelengths.
As we see in Eq. (7.17), the gas molecules in the atmosphere scatter blue light
more strongly than red. Viewed in a quantum mechanical framework, this
means that the incident sunlight (which contains roughly equivalent numbers
of all color photons) has its blue photons redirected by the gas molecules more
often than it does red ones. As a consequence, when we view the sky above us
(away from the sun), we see more blue photons arriving than red photons and
hence observe a blueness in the light. Near sunset, a view of the light coming
directly from the sun has had most of its blue photons removed by scattering,
leaving behind an excess of red.

7.2 Light scattering by density fluctuations

In discussing short-range order in amorphous materials, we focused our
attention mainly on those undulations in g(r) that occur within the first few
coordination shells. Any undulations at larger r could be safely ignored for
X-ray scattering experiments that probe only the q�1 � 0.1–5 Å range, but
cannot be ignored when visible light (q�1 � 103 Å) is employed. If we were to
look more closely at g(r) in this larger range of r, as illustrated in Fig. 7.4, we
would discover that undulations do still exist, although they are much reduced
in magnitude in comparison with those describing the short-range order.

Where do these small undulations come from? These density variations arise
from fluctuations inherent in any disordered thermodynamic system. Consider
a fluid of particles in thermal equilibrium, such as illustrated in Fig. 7.5.
Suppose we partition this system into smaller regions and compare the density

 sun 
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blu
eblue

all λ

Figure 7.3 Rayleigh scattering explains the blueness of the sky and the redness of sunsets as the result

of preferential scattering of shorter wavelength light by gas molecules in the atmosphere.
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n(r) in each box whose center is at~r. Because the particles are moving about,
we will necessarily find instances in which some boxes contain greater and
lesser density of particles than the overall density. We could characterize the
mean squared variations in density by Dn2

	 


¼ nðrÞ � nh ið Þ2
D E

, and would
find that, regardless of the size of our partitions, some variation would always

+1.01

−1.01

1

0
0.5–5 Å 5000 Å

g(r)

Short-Range Order Density Fluctuations

Figure 7.4 Beyond short-range order, corresponding to undulations in g(r) in the Angstrom range, there

exist much weaker features in g(r) that arise from thermodynamic density fluctuations present to

some degree in all disordered materials. These large length scale undulations contribute

primarily to scattering by comparably long wavelength radiation (i.e. visible light).

∆n(ri)

q – 1

Figure 7.5 An amorphous system of scattering particles partitioned into boxes of arbitrary size. The number

of particles found in each box varies from one box to the next, resulting in density fluctuations

on length scales comparable to the size of the box. The magnitude of the density fluctuation

is seen to diminish with increasing box size.
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be observed, although the size of Dn2
	 


would necessarily decrease as the
partitions grew larger. The magnitude of these inherent density fluctuations is
given in thermodynamics as

Dn2
	 


nh i2
¼

kBT

V
wT ; ð7:18Þ

where wT ¼ �V�1 @V=@Pð Þ is the isothermal compressibility. For an ideal gas
whose compressibility is large, the density fluctuations are large in comparison
with the average density. For liquids, whose compressibility is roughly 10�4

times smaller, the density fluctuations are less well resolved in comparison
with the average density. Nevertheless, these fluctuations can result in detect-
able amounts of scattered light.

7.2.1 The van Hove space correlation function

Given that the undulations in g(r) at large r are spawned by thermodynamic
fluctuations, it is customary to emphasize explicitly the role of these density
fluctuations in the static structure factor. Returning to our starting point in
Eq. (7.2), we begin by separating out the average density in the density–
density correlation function,

Cð~r1;~r2Þ 	 nð~r1Þnð~r2Þh i ¼ nh i þ Dnð~r1Þ½ � nh i þ Dnð~r2Þ½ �h i

¼ nh i2þ Dnð~r1ÞDnð~r2Þh i;
ð7:19Þ

so that Eq. (7.1) now reads as

Sð~qÞ ¼
1

N

ð

d3~r1

ð

d3~r2

�

nh i2þ Dnð~r1ÞDnð~r2Þh i

�

e�i~q � ð~r1 �~r2Þ: ð7:20Þ

Again, the rotational invariance of the amorphous structure implies that only
the difference~r ¼~r1 �~r2 matters, so,

SamorphðqÞ ¼
1

N
nh i2

ð

d3~re�i~q�~r

ð

d3~r2 þ

ð

d3~re�i~q�~r

ð

d3~r2 Dnð~r þ~r2ÞDnð~r2Þh i

� �

:

ð7:21Þ

The integrations over d3~r2 correspond to sampling with the second search
vector at different possible origins. Because of the invariance, all possible
origins will appear the same (with ensemble averaging) and cannot depend
upon the specific choice of~r2. Thus the result of integrating d3~r2 will be the
volume of the scattering region, V, and so

SamorphðqÞ ¼ nh i 2pð Þ3dð~qÞ þ

ð

d3~r Dnð~rÞDnð0Þh i= nh i½ �e�i~q�~r

¼ nh i 2pð Þ3dð~qÞ þ

ð

d3~rGðrÞe�i~q�~r;

ð7:22Þ

103 7.2 Light scattering by density fluctuations



where the van Hove space correlation function is defined here as,

GðrÞ 	 Dnð0ÞDnð~rÞh i= nh i: ð7:23Þ

Physically, G(r) represents the probability that if a density fluctuation (corres-
ponding to one of the boxes in Fig. 7.5) is present at the origin, another will be
found at a distance r away. Aside from the innocuous forward scattering, the
scattering due to these random fluctuations appears as just a Fourier transform
of G(r).

A tale of two formalisms

In our development of scattering from amorphous materials, above, we have
now developed two complementary perspectives on the relation between
structure and scattering as conveyed by the static structure factor in
Eq. (7.8) and Eq. (7.22). Both are equivalent, but each focuses attention on
differing relevant scattering length scales. In Eq. (7.8), where S(q) is related
to the Fourier transform of g(r), the emphasis is placed on small-scale
structure (q�1 � b), where individual particle positions are highly influenced
by local, pairwise interactions (i.e. bonds). This short-range order is best
described by the strong undulations seen in g(r), and is quite unrelated to that
emphasized by G(r) in Eq. (7.23) where collections of particles spanning
sizes of order q�1 >> b are considered as a continuum fluid. By comparison,
the structure at these larger length scales is not strongly influenced by
individual interactions, but rather by thermodynamic potentials and hydro-

dynamic motions that cause small fluctuations in density about a global
average value.

Fiber optic attenuation

Before leaving the subject of light scattering, we illustrate two significant
consequences that follow from G(r) in Eq. (7.23). The first concerns the
application of fiber optics for telecommunication. During the late 1980s there
was a major shift towards replacing conventional telephone wires with optical
fibers along which data, encoded in the light, could be transferred at much
higher speeds and sent together with other data sharing the same fiber.
The most common light used is l � 1.5 microns, for which silica fibers
have a low absorption allowing the signal to travel the farthest before needing
to be strengthened again. However, Eq. (7.22) reveals a remaining limitation
that arises from the presence of inherent density variations in the glass in
or around the 1.5 micron scale which scatter away light. Research is
currently aimed at refining glass production and fiber drawing procedures in
an effort to reduce these fluctuations and increase the transmission range of
commercial fibers.
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Ewald–Oseen extinction

As a second illustration of the consequences of Eq. (7.22), consider the scatter-
ing of visible light by an ideal crystal. If we again partition the crystal into many
small boxes, as shown in Fig. 7.6, what will we find regarding the variations in
the density between boxes?Well, as long as the boxes are larger than the unit cell
of the crystal, there can be no variation in the density: each box must contain

exactly the same density as the entire crystal. According to Eq. (7.23), this
would mean that G(r) ¼ 0 for all r >> b, the size of a unit cell, and that visible
light would have no scattering aside from that in the forward direction. This
result illustrates the classic Ewald–Oseen extinction theorem of optics: for l>>
separation, the small differences in phase arising from regularly spaced scatters
are seen to perfectly cancel in all directions, except the forward direction, where
the net result is a refracted ray traveling at a reduced speed c/n in the medium of
refractive index n. Thus, only when the scatters are irregularly spaced do they
produce scattering in other than the forward direction.

7.2.2 Intermediate-range order: SAXS and SANS

As we have seen, there is a vast array of undulations in g(r), which we have
separated into those at short length scales that arise from the pairwise inter-
particle interactions, and those at long length scales that stem from random
fluctuations. In some materials, there often appear intermediate range undula-
tions in g(r) (r � 10 to 100s Å) that are not derived purely from random
fluctuations, but rather appear as a consequence of the nature of extended
bonding configurations. By way of an illustration, consider again the structure
of amorphous SiO2 in which the short-range order (SRO) is characterized by a

∆n(ri)=0

q –1 

Figure 7.6 The Ewald–Oseen extinction theorem. An ordered system of particles is again partitioned into

boxes of arbitrary size (but larger than the particle spacing). Because the particles are ordered,

each box contains identical amounts of particles and thus produces none of the density

fluctuations seen for a disordered system in Figure 7.5. Without these density fluctuations there is no

scattering in other than the forward direction.
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tetrahedral unit, SiO4, shown in Fig. 7.7. In moving outwards along g(r), we
are in a sense coarse-graining the structure into one that is no longer focused
on how one atom is coordinated with another, but rather how one tetrahedral
unit is coordinated with another. As illustrated in Fig. 7.7, there is a variety of
ways in which two tetrahedra could link together to influence the structural
features in g(r) beyond the SRO regime, and herein lie the combined effects of
pairwise bonding constraints, coupled with statistical variability, that make up
intermediate-range order (IRO).

To study this IRO requires a shortening of the scattering wave vector which
can be achieved by probing smaller scattering angles (see Eq. (5.12)). In such
small angle X-ray scattering (SAXS), scattered X-rays are detected at angles as
low as 0.1�, for which q� 0.015 Å�1 and l � 2p=q probes particle separations
in the order of several hundred Ångstroms. Similarly, small angle neutron

scattering (SANS) can be employed to achieve scattering wave vectors in the
range between 0.006 Å�1 and 1 Å�1, to probe structural features ranging from
about 6 Å to 1 micron. In many covalently bonded glasses, including SiO2,
X-ray scattering studies have observed a distinct diffraction peak at a q below
that of the SRO. This “first sharp diffraction peak” is evidence of IRO in the
structure and is believed to be the result of correlations that develop between the
regions of empty space not occupied by the SiO4 tetrahedra.
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Figure 7.7 Intermediate-range order in covalently bonded glasses is illustrated by the variety of ways in

which SiO4 tetrahedra can link together. Variations in the linkages often lead to voids in the glass

structure and the appearance of a first sharp diffraction peak (FSDP). This peak is seen in small

angle neutron scattering for both a normal (undensified) specimen and one that has been

densified to 20% less free volume. Note that the SRO of the densified sample is largely unaffected,

while the FSDP shifts to higher q consistent with the compaction of voids. (Adapted from

Susman et al. (1991).)
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Summary

c For amorphousmatter possessing rotational invariance, the static structure
factor is related to the pair distribution function by a Fourier transform,
SglassðqÞ ¼ 1þ nh i

Ð

d3~rgðrÞe�i~q�~r. In X-ray scattering experiments, g(r)
can be obtained by an inverse Fourier transform of the observed,
q-dependent scattered intensity.

c The amorphous structure factor contains an isotropic (q-independent)
contribution known as Rayleigh scattering that dominates in the limit
of small q.

c The amorphous structure factor can alternatively be expressed in terms
of density fluctuations as SamorphðqÞ �

Ð

d3~rGðrÞe�i~q�~r, where
GðrÞ 	 Dnð0ÞDnð~rÞh i= nh i is the van Hove space correlation function.

c As a consequence of the Ewald–Oseen extinction theorem, light is not
scattered by a perfect crystal because it contains no density fluctuations
comparable to the wavelength of light.

c SAXS and SANS are techniques designed to probe intermediate-range
order existing between about 5 Å and 1 micron.

Exercises

7.1. Estimate the range of q for both X-rays (l ¼ 0.7 Å) and visible
light (l ¼ 5000 Å) for a small angle scattering experiment for which
0.1� < 2y < 20�.

7.2. Derive Eq. (7.13) starting from Eq. (7.12).
7.3. Consider the thermal density fluctuations present in an ideal gas. Show

that the isothermal compressibility equals the inverse of the pressure and
that the average mean squared density fluctuation, Dn2

	 


, is proportional
to the number of gas particles.

7.4. Clouds are composed of a suspension of spherical water droplets with a
range of sizes but with an average diameter roughly 50 times the
wavelength of visible light. Since clouds appear white, the Rayleigh
scattering must be such that all wavelengths are scattered equally.
Explain how this occurs. (Hint: you may want to refer back to the result
of Ex. 5.8).

7.5. The intensity of an optical signal sent along an optical fiber degrades
over distance due to Rayleigh scattering from small density fluctuations
as IðxÞ ¼ Io expð�axÞ, where the attenuation factor is obtained by
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integrating the scattered intensity in all directions, a ¼ 1
V

Ð

IS
Io

� �

R2dO,

where V is the scattering volume element and dO is the solid angle.
Assume that the density fluctuations are randomly distributed with a
mean separation 1/10th the wavelength of the light and that each has a
common magnitude given by Eq. (7.18). Show that the Rayleigh contri-

bution to the attenuation factor is given as a ¼ 8p3

3
1
l4

fj j2CkBTwT , where

C ¼ nh ie2

eomeo2
o

� �2
, and f is an unspecified form factor associated with the

scattering profile of an individual density fluctuation.

Suggested reading

Greenler’s book is full of nice pictures and explains a variety of naturally occurring

optical phenomena (including the blueness of the sky) at a level accessible to even a

non-scientist. Those interested in a proof of the Ewald–Oseen theorem should consult

the textbook by Born and Wolf.
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8 Self-similar structures and liquid crystals

Introduction

In this final chapter on the subject of scattering, we examine the structure of
extended, but finite-sized composite objects constructed of a very large number
of individual particles. Examples include polymer molecules composed of
many repeated individual chemical units, and aggregation clusters that form
when many individual particles randomly assemble into a larger structure. In
both instances, we will see that the amorphous structures of these macroscopic-
sized objects display self-similarity – a continuous hierarchy of structures that
appear identical on many alternative length scales. This self-similarity appears
in the pair distribution function as a power law dependence on radial distance,
much unlike the sort of g(r) curves we have examined thus far, and which
transforms into Fourier space as a corresponding power law variation of S(q).

Also in this chapter, we conclude our survey of structures and scattering
with a brief look at liquid crystals and microemulsions, whose structures
undergo a series of transitions with symmetries that are intermediate between
that of crystals and liquids. In these materials the particles are able to spontan-
eously self-assemble into more ordered structures as a result of only weak,
inter-particle forces.

8.1 Polymers

As the name implies, polymers are generally very large molecules constructed
of a large number of repeated chemical units. Each unit is referred to as a
“mono-mer” and thus a collection of these is a “poly-mer”. By and large,
polymers form long chains and such is the case in polystyrene, shown in
Fig. 8.1. The chain structure typically consists of a grouping of atoms in the
monomer that interlink with other monomers forming a “backbone”, together
with other groupings present in the monomer, known as side groups, that do
not participate in the linkage as such. While chains are most common, cross-
linking units can be introduced to create branching points on the chains which
allow two or more chains to interconnect, much like the additions of As and Ge
to selenium glasses discussed near the conclusion of Chapter 2.
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Although the polymer structure requires linkages between monomer units,
the specific orientation or angle made by each such linkage is largely unre-
stricted. This allows the chain to twist and bend about at each individual linkage
so as to assume a variety of possible configurations. A condensed phase of many
such polymer chains could aptly be compared to a bowl of cooked spaghetti
noodles in which each polymer noodle twists and bends in a random manner to
produce a highly entangled mixture, as illustrated in Fig. 8.1. How might we
model the structure of a single such polymer chain that exhibits so much
indifference about the shape it chooses to assume? The randomness of its shape
would seem to be an impediment. But, as we shall see, randomness is key to
understanding the structure because the random twists and bends of the chain
can be adequately modeled using what is known as a random walk.

8.1.1 The random walk

Consider a random walk scenario in which a person (a walker) starts off from
the origin and begins making a set of N sequential steps each of length b, as
illustrated in Fig. 8.2. If the walker walks in the same direction each time, he/
she would experience a net displacement R ¼ Nb after the N steps are
completed. However, if the direction of each step were randomly chosen

CH2 CH2 CH2 CH2 CH2 CH2

CH

C6H5

CH

C6H5

CH

C6H5

CH

C6H5

CH

C6H5

CH

C6H5

Figure 8.1 Molecular structure of poly(styrene) illustrating the hydrocarbon backbone and pendant side groups.

Lower figure illustrates the coiled structure of a typical polymer chain in the melt, and

entanglements occurring with other polymer chains.
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(either by throwing dice or using the result of some random number generator),
what then could we conclude about the net displacement?

For the random walk described, we could certainly express the net displace-
ment as the vector sum of all the individual steps,

~R ¼
X

i¼1;N

~ri: ð8:1Þ

This result would, of course, be different each time we set the walker to his/her
task, depending upon the actual set of random choices that occurred. Instead,
we seek some reproducible and robust measure of the average net displace-
ment of the walker such as might be obtained by performing an ensemble
average of many repeated trials. This ensemble-averaged, root-mean-squared
displacement is

Rh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~R �~R
	 


q

¼
X

i¼1;N

X

j¼1;N

~ri �~rj
* +( )1=2

; ð8:2Þ

and if we separate the double summation into self and pair terms, it becomes

Rh i ¼
X

i¼1;N

~ri �~rih i þ
X

i¼1;N

X

j¼1;N
j6¼i

~ri �~rj
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¼
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N
p
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ð8:3Þ

The second term above, corresponding to the dot product of any two random
pairs of displacements, vanishes because the cosf, averaged over all possible
values of f, is zero. As a result, we find that the average net displacement
made during the random walk is generally less than that of a walk taken in a
straight line and increases only as the square root of the number of steps taken.

Self-similarity

An important feature of the random walk is its inherent self-similar nature.
Although we started the walker off from the origin and observed his/her
displacement to increase as the square root of the number of steps taken, we
could have considered the walk to have “started” later at any arbitrary location
of the walker and we would still find that the displacement from that point on
also increases as the square root of the number of additional steps taken. In
addition, we could “rescale” the walk without changing the basic square-root-
of-the-number-of-steps feature. To see this, imagine we divided up the walk

R ∝ Nb

R ∝ Nb(a)

(b)

Figure 8.2

(a) A non-random walk produces

a net displacement that is

proportional to the number of

steps taken by the walker.

(b) In the random walk, the net

displacement of the walker

varies as the square root of the

number of steps.
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into M groups of No steps each. Each set of No steps will produce an average
displacement Lo ¼

ffiffiffiffiffiffi

No

p
b, which we could call a “leap”. The net displacement

following M such leaps is then,

Rh i ¼
ffiffiffiffiffiffiffiffiffiffi

MNo

p

b ¼
ffiffiffiffiffi

M
p ffiffiffiffiffiffi

No

p

b ¼
ffiffiffiffiffi

M
p

Lo; ð8:4Þ

and appears the same when rescaled to the larger, leap-sized steps. This
property, that a process or structure appears identically on differing scales, is
known as self-similarity and is a hallmark of many objects and processes
studied in condensed matter physics.

Pair distribution function

We can apply the random walk scenario discussed above to model the structure
of a polymer coil by imagining that the polymer is constructed by the walker,
who attaches a monomer to the one previous as he/she walks along. After the
walk is completed, the resulting polymer will have a configuration that
matches all the twists and bends that occurred in the path taken by the walker.
To characterize this structure, we now seek an expression for the pair distribu-
tion function, g(r). Recall from our discussion in Chapter 2, that this function
is defined in relation to a central monomer and is determined by the number of
monomers we find in a volume element (4pr2dr) a distance r away. Because of
the self-similarity, the structure around any arbitrary central monomer will
mimic that of a random walk starting from that point, and thus the number of
monomers contained inside a sphere of radius r about the central monomer is
given by Eq. (8.3) as

N ¼ r

b

� �a

; ð8:5Þ

where a ¼ 2. As r is increased by dr, the number of additional monomers
included inside increases as

dN ¼ a
r

b

� �a 1
r
dr; ð8:6Þ

and the pair distribution function (defined in Eq. (2.3)) then becomes

gðrÞ ¼ nh i�1 dN

4pr2dr
¼ nh i�1

4pr2
dN

dr
¼ nh i�1

4pr2
a

r

b

� �a 1
r

� �

: ð8:7Þ

We need to make one adjustment to this expression. The self-similarity upon
which it is based is only valid for distances that remain within the polymer coil
itself. Each polymer chain has a limited number of monomer units
and assumes a finite size, x ¼

ffiffiffiffi

N
p

b. For polystyrene with a mass number of
N � 104 and monomer size of about b � 5Å, a typical polymer coil would
extend no more than about 500Å in radius. Beyond this range, the number of
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additional monomers ceases to increase with increasing radius and to accom-
modate this limitation, we add to g(r) an ad hoc, exponential cutoff,

gðrÞ ¼ nh i�1

4pr2
a

r

b

� �a 1
r

� �

e�r=x: ð8:8Þ

Because the structure of a polymer coil is isotropic, the waves scattered by
the monomer particles in a polymer coil are described by the structure factor
appropriate to amorphous matter, which was introduced in Chapter 7,

SSelfSimðqÞ ¼ 1þ nh i
ð

d3~rgðrÞe�i~q�~r

¼ 1þ nh i
ð

gðrÞe�iqr cos yr2dr sin ydydf;

ð8:9Þ

which, for g(r) in Eq. (8.8), becomes

SSelfSimðqÞ ¼ 1þ a

ð

r¼1

r¼0

r

b

� �a 1
r
e�r=x sin qr

qr
dr:

We next make the change of variables using x ¼ qr, to obtain

SSelfSimðqÞ ¼ 1þ a
1

qb

� �a ð
1

0

xa�2 sin x e�x=qxdx: ð8:10Þ
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Figure 8.3 Small angle neutron scattering from protonated polystyrene in deuterated cyclohexane as a function

of reduced temperature approaching the theta temperature y. The scattering is seen to exhibit a

q
2-dependence consistent with polymer coils generated by a random walk (see Eq. (8.11) with

a ¼ 2. (Adapted from Farnoux et al. (1978).)
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The definite integral differs significantly from unity only for q�1 > x (Ex. 8)
and, since our interest is only in the region for which b < q�1 < x,
the structure factor may be approximated simply as a power law of the form,

SSelfSimðqÞ �
1

qb

� �a

: ð8:11Þ

However, if we scattered waves from a large mixture of polymer coils,
such as depicted in Fig. 8.1, we would not observe the scattering suggested
by Eq. (8.11). This expression describes the interference of scattered waves
arising from the relative positions of monomers in the same chain. In a
melt, this chain would be entangled with other similar chains, as illustrated
in Fig. 8.1, and the resulting structure factor would contain interferences
from these other monomer units as well. To view the scattering from a
single coil (or a few coils at a low concentration) requires some of the
polymers to be chemically altered (i.e. tagged), such that their monomer
units scatter more strongly (via a larger monomer form factor, fm(q)) than
other surrounding polymer coils. An example of the scattering in such a
situation is shown in Fig. 8.3, where it can be seen that the structure of the
polymer coil in a melt-like, “theta” solvent is well described by the random
walk model of Eq. (8.11) with a ¼ 2.

8.1.2 Swollen polymers: self-avoiding walks

It is a little surprising that the random walk model in which a walker is allowed
to retrace portions of his/her previous path would be so successful for describ-
ing a polymer whose monomers are certainly unable to occupy the same
location. However, in the melt the coil is severely restricted by entanglements
with neighboring coils, and these entanglements can force the monomers into
close proximity in such a fashion that the random walk manages to capture the
compact structure. When polymers are dissolved in a solvent at dilute concen-
trations, the above polymer entanglements are absent and the coils expand (or
swell) slightly. To model the structure of the swollen polymers suspended in a
good solvent will require a slight modification of the random walk scenario,
known as a self-avoiding walk (SAW).

In the self-avoiding walk we again allow a walker to make steps of length b

in randomly chosen directions and we have the walker assemble the units of
the chain as he/she proceeds. However, if the randomly chosen step should at
any point require the newly added monomer to reside at a location coincident
with a previously assembled unit, the choice is rejected and another random
choice is made. In this way, the polymer is forced to avoid itself much as it
does in the presence of a good solvent. A comparison of the structures
generated by both a random walk and a SAW, shown in Fig. 8.4, illustrate
the more swollen character of the resulting polymer coil.

R ∝ Nb

Random Walk(a)

N1/αb

Self-avoiding Walk(b)

R ∝

Figure 8.4

A comparison of the random

walk structure with the

more swollen structure obtained

in the self-avoiding walk.

114 Self-similar structures and liquid crystals



Computer simulations of the SAW scenario conducted in various dimen-
sions (d) can be summarized by the evolution of the mean displacement of the
walker with the number of steps taken, which now varies as

Rh i ¼ N1=ab; ð8:12Þ

where a ¼ dþ2
3 .

This variation closely resembles that of the randomwalk (differing only in terms
of the exponent) and again is seen to exhibit self-similarity. Ford¼ 3, a ¼ 5=3 and
is slightly smaller than that (a ¼ 2) of the random walk, consistent with the
expectation that the self-avoidance will enlarge the overall size of the polymer
coil. Again we can obtain the corresponding structure factor via Eq. (8.11) as

SSAWðqÞ �
1

qb

� �5=3

; ð8:13Þ

which is seen to agree well with the neutron scattering from polymer coils in a
good solvent, shown in Fig. 8.5.

8.2 Aggregates

Consider constructing a “polymer” by an alternative route. This time we begin
with a solution containing individual monomers. The solution is specially
designed to initially keep the monomers dissolved, but can be chemically
altered to induce the monomers to stick together whenever they come into
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Figure 8.5 Neutron scattering from polymer in a good solvent as a function of polymer concentration,

showing good agreement with the self-avoiding walk structure. (Adapted from Farnoux

et al. (1978).)
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contact with one another. As these monomers diffuse about in the solution,
they occasionally encounter a second monomer and combine to form a dimer.
Additional encounters lead to the formation of larger-sized polymer molecules
in a process known as aggregation.

However, unlike the chain polymers formed by the random walk, these
polymer aggregates will form clumpy structures with a dendritic (tree-like)
quality, containing multiple levels of branching, as illustrated in Fig. 8.6.
A careful examination of this figure would reveal that the dendritic pattern
is reproduced when viewed at multiple levels of magnification, suggesting
that these aggregated clusters contain a self-similar structure much like the
polymer coils discussed previously. Note also, that as the cluster grows
during the aggregation process, incoming monomers generally do not travel
far into the interior of the cluster before making contact and sticking.
Rather, they tend to stick to monomers on the outer edge of the cluster.
As a result, one sees that the cluster develops considerable amounts of
empty space within its interior and the total mass (total number of mono-
mers sticking together) does not increase as the cube of the cluster size, as
do most other forms of condensed matter. Instead the mass of the cluster is
seen to increase as

N � r

b

� �Df

; ð8:14Þ

where the exponent, Df, is a fractal dimension, less than three.

Figure 8.6 Tunneling electron micrograph of a gold colloidal cluster containing 4739 gold particles, obtained by

DLCA. (Reproduced from Weitz and Oliveria (1984).)
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In the literature on aggregation one finds two important variants of the
aggregation process. The first of these is diffusion limited aggregation

(DLA), in which clusters form primarily by the addition of monomer
particles, as described above. In DLA, the aggregate typically develops a
fractal dimension of about Df ¼ 2.5, which is consistent with a reasonably
small amount of empty space. Alternatively, a second aggregation process,
known as diffusion limited cluster aggregation (DLCA), involves the aggre-
gation of pre-existing clusters into much larger aggregates. In this case, the
resulting aggregates tend to contain a larger amount of empty space and
exhibit Df � 1.8.

8.2.1 Fractals

Our aggregating cluster is an example of self-similarity, known as a fractal.
Although fractals are found extensively in nature, the self-similarity can be
best understood by examining certain geometrically engineered fractals. An
example is the so-called Sierpinski gasket, shown in Fig. 8.7, which is
generated by the sequential “aggregation” of equilateral triangles of side L.
In the first step, three triangles are assembled to form a larger triangle (of side
2L) with a triangular void in the center. In the next step, three of these larger
triangles are combined to form a yet larger triangle of side 4L. The process is
repeated indefinitely, leading to a large-sized structure containing a consider-
able amount of empty space.

To determine the fractal dimension for this object, we consider how its mass
increases with its increasing size. From Eq. (8.14),

lnN � Df ln
r

b

� �

; ð8:15Þ

which is the equation of a line on a double-logarithmic scale whose slope is the
fractal dimension,

Df ¼
D lnN

D lnðr=bÞ ¼
ln Niþ1=Nið Þ
lnðriþ1=riÞ

: ð8:16Þ

Returning to the Sierpinski gasket, we see that in any iteration (i) of the
aggregation process, the mass increases by a factor of three, while the size
doubles. Thus the fractal dimension for the Sierpinski gasket is

Df ¼
ln 3ð Þ
lnð2Þ ¼ 1:5849 . . . ;

and is seen to be much less than 3, indicating that a large amount of empty
space is present.

L

2L

4L

Figure 8.7

Self-similarity of the Sierpinski

gasket. In each new generation,

the size is doubled while the

mass is tripled. At any point in

the generation the overall

structure appears similar to any

earlier or later generation.
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Because the aggregates are self-similar, we can determine the pair distribu-
tion function, as we did for the chain polymers, by counting the number of
monomers in a sphere of radius r,

N � r

b

� �a

¼ r

b

� �Df

; ð8:17Þ

where the exponent a is in this instance identified as the fractal dimension Df.
As before, we find the structure factor via Eq. (8.11) as

SfractalðqÞ �
1

qb

� �a

� qbð Þ�Df : ð8:18Þ

An example of S(q) obtained by combined laser light scattering and small
angle X-ray scattering for the DLCA of 50Å gold particles in a solvent is
shown in Fig. 8.8. In this double-logarithmic presentation, the slope of S(q)
provides a direct measure of the fractal dimension.

8.2.2 Example: soot formation

As another good example of scattering from self-similar objects, we look now at
scattering studies on soot particles that form in the combustion zone above a
fuel-enriched flame. Anyone who has done welding with an acetylene torch is
familiar with the black fluff that forms when the torch is initially ignited. This
soot is primarily composed of carbon spherules that stick together as they cool
vertically above the flame. As these particles continue to rise in the flame, they

105

103

104

102

101

10–210–310–4 10–1

light scattering

small angle
X-ray scattering

q –1.75 ± 0.05

q –4

DLCA of
50 Å gold

colloid

q (Å–1)

S
ca

tte
rin

g 
In

te
ns

ity

Figure 8.8 Combined light and SAXS from DLCA gold colloid clusters formed in solution (an example of which is

found in Figure 8.6). Over a range of scattering wave vectors the scattered intensity decreases as a

power law with slope 1.75, equal to the fractal dimension. (Adapted from Dimon et al. (1986) and

Weitz et al. (1985).)
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aggregate in a manner similar to the DLCA of gold particles in a solvent and
form dendritic clusters with sizes comparable to the wavelength of visible light.

Figure 8.9 shows results of light scattering conducted at differing heights
above the burner. Near the burner, the aggregation process is in its infancy and
the particle sizes remain small in comparison with the scattering length scale
(q�1) of the incident light. Here, the structure factor mimics the isotropic
(q-independent) scattering seen in Rayleigh scattering from a random collec-
tion of small clusters. Higher in the flame, where aggregation has been more
extensive and the average particle size is larger, the scattering length scale
begins to penetrate the interior structure of the clusters where self-similarity is
present. At the highest point in the flame, S(q) is seen to vary roughly as q�1.75,
indicating that these soot particles have the same fractal dimension as that for
clusters of gold produced by aggregation carried out in a solution.

Guinier regime

In Fig. 8.9 one sees that S(q) “bends over” from its Rayleigh (q-independent)
dependence towards q�D

f dependence as the scattering length scale decreases
from large lengths that probe collections of several clusters, to smaller lengths
that probe the interior structure of the clusters themselves. Hence the value of
q�1 near the transition region, known as the Guinier regime, should provide a
measure of the average size of the clusters themselves. Indeed, in Fig. 8.9 one
senses that the location of this transition point shifts to smaller q (larger q�1) as
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Figure 8.9 Light scattering from soot particles obtained at various distances above the burner. At the

greatest height, one sees evidence of a power law with the same DLCA fractal dimension observed

for gold colloidal clusters formed in solutions (Figure 8.8). At small wave vectors, and lower

heights, a q-independent Rayleigh scattering is observed as a result of the reduced size of the soot

particles (here smaller than the wavelength of the light). (Adapted from Sorensen et al. (1998).)
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the distance above the burner increases in accord with our expectation that the
clusters are growing in size.

The transition is not sharply defined, and to obtain amore accurate measure of
the cluster size we examine the behavior of S(q) in the limit that q�1 approaches
the cluster size. Again, we can express the structure factor in Eq. (8.9) as

SðqÞ ¼ 1þ 4p nh i
ð

gðrÞ sin qr

qr

� �

r2dr: ð8:19Þ

Since our q�1 of interest is near q�1 � x, the quantity qr remains less than
unity throughout this integration and we are justified in expanding the term in
brackets as,

sin x

x
� 1� x2

3!
;

to obtain

SGuinierðqÞ � 1þ nh i
ð

gðrÞ4pr2dr � nh i
ð

gðrÞ qrð Þ2
6

4pr2dr: ð8:20Þ

The first integral in Eq. (8.20) is just a computation of the coordination
number (see Eq. (2.4)) carried out over the entire cluster. This results in
counting all the Nm monomers that make up the cluster with the exception of
the central monomer about which g(r) is defined to exclude,

SGuinierðqÞ � 1þ ðNm � 1Þ � q2

6

ð

nh ir2gðrÞd3~r: ð8:21Þ

The second integral is seen to be similar to the definition of a radius of

gyration for the cluster,

R2
G 	

Ð

ð~r �~rCM Þ2nð~rÞd3~r
Ð

nð~rÞd3~r
; ð8:22Þ

where~rCM is the position of the cluster’s center of mass. Indeed, one can show
(Ex. 6) that

2R2
G �

Ð

r2 nh igðrÞd3~r
Nm

; ð8:23Þ

and that S(q) near the transition region is given approximately as

SGuinierðqÞ � Nm 1� q2R2
G

3

� �

: ð8:24Þ

The utility of Eq. (8.24) lies in its universal applicability since the result is
independent of g(r) and therefore independent of the actual internal structure of
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the objects themselves. Furthermore, as illustrated in Fig. 8.10, where
the measurements presented in Fig. 8.9 are plotted in a linearized manner, the
radius of gyration of the object can be determined directly from the experiment.

Delving deeper: the Porod law

One reason why we have focused on aggregates is because they possess a wide
range of structural regimes and offer an excellent example of how q�1 func-
tions as a relevant scattering length scale – a telescoping measuring stick – that
probes structure at different levels as we change q. With this in mind, let us
pause to reflect on the evolution of the scattering from a system of soot clusters
as the scattering length scale (q�1) decreases. This evolution is illustrated in
Fig. 8.11. At very large q�1, larger than the average separation (Drcluster)
between clusters, our scattering records mainly the interference of scattered
waves arising from the relative locations of a gaseous system of macro-sized
particles (i.e. the clusters). The location of these large gas particles is random
and is described by a pair distribution function gsystemðr > DrclusterÞ � 1 which
produces an isotropic (Rayleigh) scattering with Ssystemðq > Dr�1

clusterÞ � 1. The
normalized scattered intensity, given by Eq. (5.19), would be

I 0S 	
IS

ESj j2
¼ Nc fcðq � 0Þj j2; ð8:25Þ
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Figure 8.10 Guinier plot of the scattering from soot particles shown previously in Figure 8.9. The radius of

gyration of the particles is determined from the slope of the dashed lines using the inverse

of Eq. (8.24) under a small q limit. Note that the size of the soot particles increases with

increasing distance above the burner due to increased aggregation time. (Adapted from

Gangopadhyay et al. (1991).)
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where Nc is the number of clusters in the system and fc(q) is the form factor that
describes the characteristic scattering from a single cluster.

As the scattering length decreases further, it approaches that of the size (RG

or x) of the individual clusters and the scattering begins to explore the
internal structure of a cluster itself. In this instance, we now replace the
cluster form factor fc(q) by the corresponding structure factor of a cluster,
Sc(q), containing Nm monomers each of which scatters with a monomer form
factor, fm(q):

I 0S ¼ Nc fcðqÞj j2¼ Nc Nm fmðq � 0Þj j2ScðqÞ
n o

: ð8:26Þ

Nc clusters Nm monomers

single cluster single monomer
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Figure 8.11 Illustration of the various scattering regimes of soot aerosols as the scattering length scale decreases.

Each regime appears as a distinct power law in the static structure factor.
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Just at q�1�RG, the cluster structure is described by theGuinier law inEq. (8.24),

I 0S ¼ NcN
2
m fmðq � 0Þj j2 1� q2R2

G

3

� �

; ð8:27Þ

but proceeding deeper into q�1 < RG, we begin to probe the self-similar arrange-
ment of monomer positions that comprise the internal structure of the cluster,

I 0S ¼ NcNm fmðq � 0Þj j2 1þ 1

qb

� �Df

( )

; ð8:28Þ

until we eventually shrink q�1 down to the level of the monomer size, b, where

I 0S ¼ NcNm fmðqÞj j2: ð8:29Þ

Now what happens? At this level we can again replace the monomer form
factor by a corresponding structure factor of a monomer, Sm(q),

I 0S ¼ NcNm Na faðq � 0Þj j2SmðqÞ
n o

; ð8:30Þ

where Na is the number of atoms in a monomer and fa(q) the atomic form
factor. But what is the internal structure of the atoms in a monomer? Let us
assume a crystalline structure with atoms arranged on a lattice with lattice
spacing a. We have seen (Eq. (7.20)) that Sm(q) can be alternatively expressed
in terms of density fluctuations as

Smð~qÞ ¼
1

Na

ð

d3~r1

ð

d3~r2 nh i2þ Dnð~r1ÞDnð~r2Þh i
n o

e�i~q�ð~r1�~r2Þ; ð8:31Þ

which, aside from a forward scattering contribution, reduces to

Smð~qÞ ¼
1

Na

ð

d3~r1

ð

d3~r2 Dnð~r1ÞDnð~r2Þh ie�i~q�ð~r1�~r2Þ: ð8:32Þ

Consider now a regime of scattering lengths where b > q�1 >> a, as
illustrated in Fig. 8.12a. For this regime, the fluctuations in atom density
vanish everywhere in the interior of the monomer because of its ordered
structure. The only contribution occurs on the surface of the monomer where
there is a discontinuity in the atom density, and so

Smð~qÞ �
1

Na

Dn2surface
	 


X

i;j
surface

e�i~q�ð~ri�~rjÞ; ð8:33Þ

wherewe have coarse-grained our remaining surface integration into a summation
of boxes of size q�1 as illustrated in Fig. 8.12a. For the regime of q�1 < Dr that
we are considering, the double summation of interference termswill randomize to
become proportional to the number of boxes on the surface, Ns � b2=ðq�1Þ2.
Meanwhile, the magnitude of the surface density fluctuations decreases in
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proportion to the decreasing box size,
ffiffiffiffiffiffiffiffiffiffiffiffi

Dn2h i
p

� q�1ð Þ3=b3. Thus, we obtain in
this scattering regime the so-called Porod scattering law,

I 0S ¼ NcNm faðq � 0Þj j2Ns Dn2
	 


¼ NcNm faðq � 0Þj j2 1

qb

� �4

: ð8:34Þ

An example of the Porod law is illustrated in Fig. 8.12b, where SAXS has been
used to extend the q-range of studies of soot particles to scales within the size
of the monomers.

8.3 Liquid crystals

Thus far we have explored two extremes of structure: the well-ordered
structure present in crystalline materials for which only a limited set of
symmetry operations exist, and the reasonably random structure of
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Figure 8.12 (a) Figure illustrating the partitioning of a monomer particle into cells of fixed density (interior) that

contribute no scattering by virtue of the Ewald–Oseen extinction, and cells of variable density

(density fluctuations) located only on the surface of the particle whose mean density fluctuation

scales with the cell size. The Porod scattering law arises solely from the presence of an interface.

(b) Combined light and SAXS measurements conducted on soot aerosols. A fractal regime is

indicated at small q, which crosses over into the Porod regime where the intensity decreases as the

fourth power of the scattering wave vector. (Adapted from Sorensen et al. (1998).)
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amorphous materials for which an unlimited number of symmetry operations
are possible, owing to their average translational and rotational invariance. In
this final section regarding scattering from matter, we examine so-called
liquid crystals which possess both the orderliness of a crystal and the
randomness of a liquid, simultaneously. These materials consist of liquids
whose constituent particles undergo partial ordering transitions, either with
respect to temperature in the case of thermotropic liquid crystals, or with
respect to composition in the case of lyotropic liquid crystals. As a result of
these transitions, the infinite symmetry of the liquid is systematically
decreased or “broken” and mesoscopic range ordering appears spontaneously
through a process of self-assembly.

8.3.1 Thermotropic liquid crystals

We begin by considering the thermotropic liquid crystals whose particles
consist of single molecules with an asymmetric profile. These particles gener-
ally have a rod-like shape with a length (l) significantly greater than their waist
(a), as illustrated in Fig. 8.13. In the isotropic phase, found at high tempera-
tures, thermal agitation serves to effectively randomize both the positions and
orientations of these oblong particles, resulting in the rotational and transla-
tional invariance common to normal liquids. Because of the asymmetry of the
particles, the short-range order of the isotropic phase, as described by a pair
distribution function, exhibits two distinct correlations associated with two
prominent particle–particle spacings. As illustrated in Fig. 8.13, the particles in
this randomized liquid are predominantly separated either by the distance l,

l

a

ki

incoming wave

ki

incoming wave

ql ≈ 2π/l

qa ≈ 2π/a

Figure 8.13 Illustration of the oblong shape of a typical liquid crystal molecule and the two prominent

particle spacings relevant for scattering. Note the small spacing corresponds to a larger

scattering angle.
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corresponding to the length of the particles, or by the distance a, corresponding
to the width of the particles. In this instance S(q), as measured by the scattering
of waves with an appropriate q�1, would display two broadened halos at
scattering angles in the forward direction where ql � 2p=l and qa � 2p=a, as
shown in Fig. 8.14.

Nematic phase

As the temperature is lowered, reduced thermal activity allows the system to
enter into a partially ordered state known as the nematic phase. In this phase
the rod-like particles retain their random positions, but assume a roughly
common orientation in space, specified by a unit vector known as the
director, n̂, as illustrated in Fig. 8.15. The phase is thermodynamically favored
because of the improved packing efficiency and increased cohesion that result
when the particles are aligned relative to one another.

In the nematic phase, translational invariance remains but the rotational
symmetry is broken as the system no longer appears the same (on average)
when rotated in certain ways. For example, if we rotate about any axis
perpendicular to the director we will sense a roughly 2-fold symmetry. How-
ever, if we rotate about the director, the system will appear to be rotationally
invariant. These simultaneous features of both order and disorder are what give
liquid crystals their name.

ql

qa

ki

ki

isotropic

Figure 8.14 Scattering patterns from the isotropic phase are identical in any direction of incidence because of the

rotational and translational invariance. Two diffuse halos occur: one at a small scattering angle

corresponding to the length (l) of the molecules and one at a larger scattering angle corresponding

to the width (a) of the molecules.
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What happens if we scatter from the nematic phase? The answer now
depends upon the orientation of the scattering experiment. As shown in
Fig. 8.15, if our incident waves are directed in parallel with the director,
interference will arise only from the spacing a between the oriented particles
and a single halo will appear corresponding to qa � 2p=a. However, if our
incident waves are directed from the sides (perpendicular to the director) two
partial halos will appear. The outer halo arises from short spacing (a), which,
because of the orientation of the particles, is emphasized only in the horizontal
directions. By contrast, the inner halo caused by the long spacing (l) is
emphasized only in the vertical direction.

Liquid crystal displays

Liquid crystals find practical application in liquid crystal displays or LCDs.
These displays consist of a nematic phase sandwiched between two crossed
polarized plates, as shown in Fig. 8.16. The inner surfaces of each plate are
treated in a way that promotes the alignment of the oblong particles along a
direction in parallel with the polarizer and leads to a continuous rotation of the

ˆ n 

nematic

ki

ki

Figure 8.15 Scattering patterns from the nematic phase are sensitive to the direction of incidence.

Radiation incident from the top observes a random pattern of objects with spacing of

approximately a and produces a single diffuse halo at the larger scattering angle, qa. Radiation

incident from the sides observes a collection of scatterers with discrete rotational symmetry.

In the vertical direction, the prominent spacing is l and interference leads to two lobes at a

small scattering angle. In the horizontal direction, the prominent spacing (a) leads to two lobes at

a large scattering angle.
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director by 90� as one travels through the display. Unpolarized light incident
on the display is polarized upon entering the device and its polarization is
preferentially rotated in passing through the twisted nematic phase, allowing
considerable amounts of light to exit through the second polarizer. However,
when an electric field is applied, an induced dipole moment develops on
the particles causing those in the interior of the liquid to align vertically with
the field. This alignment destroys the twisted phase. Incident light polarized by
the first polarizing filter is no longer rotated and is blocked by the second filter
causing a darkened appearance.

Smectic phases

When the nematic phase is cooled further it enters into the smectic (A) and
smectic (C) phases, illustrated in Fig. 8.17. In these phases, the oriented
particles of the nematic phase separate into a set of vertical planes with a plane
spacing roughly equal to the particle length, l. Symmetry is broken further as
the translational invariance is now partially lost. If we translate vertically along
the director, we find a repeating pattern in the average particle positions owing
to their ordering into planes. However, if we translate horizontally, we find no
pattern and the translational invariance remains intact.

Again, scattering of waves by the smectic (A) will continue to display a
partial halo in the horizontal plane associated with the random particle separ-
ations of roughly a. In the vertical direction, the vertical ordering into planes
will result in reinforcement of the constructive interference (quasi-Bragg
diffraction) in that direction, forcing the partial halo to shrink to a smeared

VV

Figure 8.16 Operating principles of a liquid crystal display.
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point at ql � 2p=l. A similar pattern emerges for the smectic (C) except for the
rotation of the qa � 2p=a partial halo by the relative angle, f, between the
director and the plane normal, and an increase in the location of the Bragg
spots to qC � 2p=l cosf (see Fig. 8.17b).

8.3.2 Lyotropic liquid crystals: micelles and microemulsions

Unlike thermotropic liquid crystals that are composed of a single asymmetric
molecule species and whose ordering arises from decreasing temperature,
lyotropic liquid crystals consist of mixtures of particles that enter into a variety
of partially ordered phases as a result of the relative concentrations. Key to
these liquid crystals is the incorporation of certain amphiphilic particles that
interact with other particles in an asymmetric fashion. Most common among
the amphiphilic molecules are the lipids that consist of short hydrocarbon
chains terminated at one end by a head group. The head group contains a
charge or dipole moment that favors the presence of water (hydrophilic), while
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Figure 8.17 Scattering patterns from the (a) smectic (A) and (b) smectic (C) phases. The introduction of

translation symmetry along the vertical direction results in narrowing of the vertical lobes

(discussed with regard to the nematic phase in Figure 8.14) into two diffuse spots. In the horizontal

direction, translational symmetry remains absent and the two lobes at large scattering angle

persist. In the case of the smectic (C), these lobes are rotated by an angle equal to the angle

between the normal of the planes, N, and the director, n̂.
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the hydrocarbon tail avoids water (hydrophobic) and prefers oils. If you have
ever washed dishes by hand, you have already encountered these amphiphilic
molecules. Dish soap contains lipid-based surfactants that, when added to oily
water, surround the oil by sinking their hydrocarbon tails into the oil while
leaving their hydrophilic heads exposed to the water. This removes oil from the
surfaces of dishes and allows the oil to be suspended in the water and
eventually directed down the drain.

In the absence of oil, mixtures of water and lipid assume a variety of stable
phases depending on the relative concentrations, as shown in Fig. 8.18. At very
low concentrations of lipid, the amphiphilic molecules find no benefit in
joining together unless there are sufficient numbers to create an enclosed
structure, known as a micelle, in which the hydrocarbon tails are safely
concealed away from the water with the hydrophilic heads forming a spherical
shell. As the concentration of lipids increases, these micelles coalesce in an
effort to better shield their hydrophilic tails and, for a range of concentrations,
the micelles form into long tubes that pack into an ordered hexagonal structure.
With increasing concentration, these tubes coalesce to form sheets and the
system enters the lamellar phase in which stacks of lipid bilayers form
separated by layers of water. At even higher concentrations, the phases form
in reverse order as the hydrophilic heads now begin to encase ever decreasing
amounts of water.

Ternary mixtures of water, lipid (surfactant) and oil are referred to as
microemulsions and like the binary mixtures discussed above, these systems
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Figure 8.18 Schematic phase diagram for lyotropic liquid crystals as a function of water content (not to

scale), illustrating the variety of macroscale structures that result from self-assembly. (Adapted

from Seddon (1990).)
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undergo a variety of phase transitions depending upon the relative concen-
trations of the three components.

Self-assembly

Lyotropic liquid crystals provide an excellent example of the static self-

assembly that is often encountered in condensed matter physics wherein a
system, interacting only by weak forces (van der Waals or hydrogen bonding),
spontaneously assumes an ordered configuration on length scales much larger
than the average particle separation. This sort of self-assembly is quite unlike
the molecular-scale ordering that occurs with crystallization which is driven by
much stronger interactions occurring at shorter distances, and the spontaneity
of the ordering is evident in a simple experiment. Imagine we had a tank
containing a lamellar phase of lipid bilayers, which we stirred vigorously so as
to break up the ordered structure. Without any changes to the composition,
temperature or pressure, the molecules in the system would, over time,
reassemble themselves into the lamellar structure.

Microemulsions, including the ordered phases of the lipid/water system, are
an example of static self-assembly which occurs at equilibrium. However,
there are a number of situations in which self-assembly arises out of equilib-
rium when the system is dissipating energy. A prime example of this sort of
dynamic self-assembly is found in the phenomenon of Rayleigh–Benard
convection. In this process, a thin layer of liquid is sandwiched between two
flat surfaces of differing temperature, with the hotter surface at the bottom.
When the temperature difference between the two surfaces is small, heat from
the lower surface migrates in a uniform manner to the upper surface by thermal
conduction. But when the temperature difference is increased sufficiently,
a rather dramatic transition to convection occurs which drives the development
of a series of convection cells, as illustrated in Fig. 8.19. Again, spontaneous
ordering develops on a macroscopic level. Provided the temperature difference

Hot

Cold

Figure 8.19 Rayleigh–Benard convection. At small temperature differences between the upper and lower plates,

heat merely conducts through the fluid. However, at some critical temperature difference, thermal

convection sets in and produces alternating regions of ascending and descending fluid that results in

circular convection patterns.
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is maintained, the rotation of the cells (alternating from clockwise to counter-
clockwise) remains stable.

Self-assembly is currently an important emerging theme in the development
of nanoscience and technology. The past approach to miniaturization of
devices (e.g. the miniaturization of computer chips) has been a “top-down”
approach in which existing production technologies are merely scaled to
shorter and shorter length scales. Self-assembly offers a radically different,
“bottom-up” approach, in which nanoscale objects are manufactured by the
building up of the object from molecular components through the process of
self-assembly.

Summary

c Polymer coils are self-similar objects that can be adequately modeled
by either a random walk or a self-avoiding random walk.

c Aggregates produced by diffusion-limited aggregation processes (DLA
or DLCA) are also self-similar and characterized by a fractal dimen-
sion, Df < 3.

c The structure factor of a self-similar object quite generally follows a
power law of the form SSelfSimðqÞ � qbð Þ�Df .

c The size of an aggregated cluster can be estimated by a Guinier analysis

of the structure factor, SGuinierðqÞ � Nm 1� q2R2
G

3

n o

, where RG is the

radius of gyration of the cluster.

c Liquid crystals undergo phase transitions in which symmetries inter-
mediate between liquid and crystal occur.

c Self-assembly refers to the spontaneous development of macroscopic
order induced by a weak interaction.

Exercises

8.1. Estimate the radius of gyration of a Nm ¼ 107 molecular weight linear
polymer in a good solvent.

8.2. Using either a random number generator or dice, execute a 2D random
walk on a piece of graph paper for a minimum of 100 steps. Record the
net displacement after each step and plot this against the step number.
Evaluate the result in the light of the theoretical prediction of Eq. (8.3).

132 Self-similar structures and liquid crystals



(More ambitious students are encouraged to use a spreadsheet or write a
computer algorithm to complete this exercise.)

8.3. Using either a random number generator or dice, execute a 2D self-
avoiding walk on a piece of graph paper for a minimum of 50 steps. (If
you get trapped before 50 steps have occurred, back up several steps and
try again.) Record the net displacement after each step and plot this
against the step number. Evaluate the result in the light of the theoretical
prediction of Eq. (8.12). (More ambitious students are encouraged to use
a spreadsheet or write a computer algorithm to complete this exercise.)

8.4. Shown in Fig. 8.20 are two geometrical fractals embedded in a 2D space.
Both of these are commonly used as broadband antennae in modern cell
phones. Determine the fractal dimension of each.

8.5. Shown in Fig. 8.21 are two geometrical fractals embedded in a 3D space.
Determine the fractal dimension of each.

(a) (b)

Figure 8.20

(a) (b)

Figure 8.21
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8.6. Show that the radius of gyration of a fractal cluster containing Nm

monomers is given by Eq. (8.23).
8.7. Shown in Fig. 8.22 is the static structure factor for some system of

aggregated particles. (a) Identify the q-ranges associated with the Ray-
leigh, Guinier, self-similar, and Porod regimes. (b) Estimate the mean
cluster size (and explain your answer). (c) Estimate the mean monomer
size (and explain your answer). (d) Determine the fractal dimension of
the particles.

8.8. In arriving at Eq. (8.11) from Eq. (8.10), it was stated that the definite
integral is roughly unity over the q-range of interest. (a) For the case of
the random walk (a ¼ 2), compute this integral and verify that it is
indeed nearly unity for q�1 < x. (b) Also, verify that the isotropic
(Rayleigh) term may be ignored in the present q-range of interest.

8.9. In the light scattering study of soot aerosols, researchers determined the
radius of gyration of the soot clusters in Fig. 8.10 by using the Guinier
law of Eq. (8.24). (a) First show that for small q, the Guinier expression

can be inverted to obtain Sð0Þ=SðqÞ � 1þ ðqRGÞ2=3
h i

. (b) Use this

result to verify the values of the radius of gyration given in Fig. 8.10 for
the three highest positions (15, 17 and 20 mm) in the flame.

8.10. In the lab, students measured the intensity of light scattered by a
suspension of polystyrene spheres in water at several angles and pro-
duced a Guinier plot of the normalized inverse scattering intensity, as
reproduced in Fig. 8.23. (a) Use this to determine the mean radius of
gyration of the spheres. (b) The manufacturer specifies the spheres to
have a diameter of 109 nm. Assuming the spheres are of uniform
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density, determine from the radius of gyration the corresponding mean
sphere diameter. (Caution: this diameter is not simply 2 RG. You need to
first determine how the radius of gyration is related to the radius of a
solid sphere.)

Suggested reading

Mandelbrot’s text is a classic and is filled with many figures that really develop the

theme of fractals and self-similarity at an introductory level. The review by Sorensen

provides a comprehensive overview of scattering by fractal materials. The article by

Whitesides and Grzybowski gives several additional examples of self-assembly and its

technological significance.
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PART III

DYNAMICS

A steaming cup of coffee is sitting on my desk. Aside from the steam, there is

little else that would suggest any other activity is present. The cup and it contents

appear to be “at rest”. But a little closer examination reveals a small ripple of

waves on the surface of the liquid caused by amechanical pump in the room next

door. Indeed, if I rest my finger gently on the lip of the cup, I can feel the

vibration. I can also feel the heat that has developed in the cup, now several

minutes since I poured the coffee from the pot and added some creamer.

If I could examine this evenmore closely Iwould actually see that nothing is truly

“at rest”. The particles of the liquid are jostling about incessantly. The particles of

the creamer that I added have clearly taken flight and diffused rapidly out into all

regions of the coffee. The cup itself is also in motion. Its particles are undergoing

incessant vibrations that are ultimately responsible for the heat I feel when I hold it.

Perhaps most interesting is that all this microscopic motion appears to be

driven entirely by thermodynamics. The coffee and cup are sitting in a climate-

controlled office and there is a constant flux of thermal energy (heat) entering

and exiting both the coffee and the cup to keep things moving.

In discussing dynamics, we focus mostly on those microscopic motions

present in liquids and solids that are driven by thermodynamic forces. We

begin in Chapter 9 with the motion of particles in a liquid, and commence by

adapting our concept of a structure factor to accommodate the time-dependent

scattering from density fluctuations of a liquid caused by the incessant jostling.

Following this, in a pair of chapters, we examine the vibrational motions of

particles in crystals and glasses to demonstrate how these motions in turn

determine thermal and transport properties of these materials.

In Chapters 12 and 13 we consider the inherent motions of conduction

electrons in metallic crystals. Not only will we see how electron motions

contribute to the thermal properties of a crystal, we will also discover why

certain crystals are better or worse conductors of electricity.

In a final chapter on the subject of dynamics, we contrast all of this

microscopic motion with the comparatively macroscopic deformations of a

material that result when an external force is applied. Interestingly, we will

discover that the response of a material to such bulk forces shares much in

common with those microscopic dynamics present in the absence of the force.





9 Liquid dynamics

Introduction

In Chapter 5 we introduced the structure factor, S(q), as the Fourier representa-

tion of the positions of a collection of fixed, elastically scattering, particles. In

reality, these particles are rarely fixed. In a solid (crystal or glass), the particles

are bound together by bonds and, while unable to wander about, are able to

oscillate or vibrate about a fixed center of motion. In a liquid, the particles are

even less constrained and are free to wander around over considerable dis-

tances. In this chapter we develop the dynamic structure factor as a straight-

forward extension of the static structure factor introduced previously, and

apply it to examine the dynamics of liquid-like systems. In one instance, we

consider the Brownian diffusion of macromolecules in a solvent, where the

motion mimics that of the random walk we discussed in the previous chapter.

In another instance, we show how thermodynamically driven density fluctu-

ations present in a simple liquid are responsible for the characteristic Rayleigh–

Brillouin spectrum of light scattering. We also take this opportunity to consider

the special case of slow dynamics in polymer liquids and to briefly consider the

nature of the liquid-to-glass transition that separates amorphous solids from

their liquid counterparts.

9.1 Dynamic structure factor

We can think of a liquid as a time-dependent amorphous structure. In many

ways, the structure of a liquid resembles the structure of a glass in that, at any

instant in time, a “snapshot” of its S(q) resembles that of the glass. Indeed, the

only real difference between a liquid and a glass is the presence or absence,

respectively, of long-range translational motion. In the liquid, the translational

motion results from the incessant jostling of the particles allowing them to

wander about. By virtue of this motion, particles of the liquid are able to

rearrange on some characteristic time scale (related to the viscosity of the

liquid) into different, but thermodynamically equivalent, amorphous configur-

ations whose instantaneous structure resembles that of a glass. For certain glass

forming liquids near their glass transition point, the characteristic time scale for
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these rearrangements can become exceedingly long with some unusual conse-

quences, as we will discuss later.

For time-independent structures, we found in Chapter 5 (Eq. (5.26)) that the

structure factor was fundamentally related (by a double Fourier transform) to

the density–density correlation function:

Sð~qÞ ¼ 1

N

ð

d3~r1

ð

d3~r2Cð~r1;~r2Þe�i~q�ð~r1�~r2Þ; ð9:1Þ

where the density–density correlation function was defined as

Cð~r1;~r2Þ 	 nð~r1Þnð~r2Þh i: ð9:2Þ

As illustrated again in Fig. 9.1, Cð~r1;~r2Þ contains two search vectors and

represents a conditional probability that if a particle is located at~r1, another

will be found at~r2.

This statement would still be completely true for a liquid if we were

considering a discrete instant in time (i.e. a snapshot). However, in the liquid

the structure is evolving as a result of the incessant jostling of the particles and

we need to accommodate this by a time-dependent generalization of the

density–density correlation function:

Cð~r1;~r2; t1; t2Þ 	 nð~r1; t1Þnð~r2; t2Þh i: ð9:3Þ

r2 

r1 

r2(t2)

r1(t1) 

C ( r1 ,t1,r2 ,t2)C (r1 , r2 )

S (q ) S (q ,ω)

Static Structure Factor Dynamic Structure Factor

Figure 9.1 Comparison of the static and dynamic structure factors. (a) The static structure factor, S(q), is

derived from a spatial Fourier transform of a time-independent density–density correlation

function. (b) The dynamic structure factor, Sðq;oÞ, is derived from both a spatial and a

temporal Fourier transform of a time-dependent density–density correlation function.
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Here the meaning of Cð~r1;~r2; t1; t2Þ, illustrated in Fig. 9.1, now represents the

probability that if a particle is located at~r1 at time t1, it or another particle will

be found at~r2 at another time t2.

9.1.1 The van Hove correlation function

For a liquid at equilibrium, the average particle density, nh i, is time-independent

and so it is convenient to express the local density as the average density

plus a fluctuation, nð~r; tÞ ¼ nh i þ Dnð~r; tÞ, where Dnð~r; tÞ is the local density

fluctuation, which can be either positive or negative. The time-dependent

density–density correlation function can then be restated in terms of density

fluctuations as,

Cð~r1;~r2; t1; t2Þ 	 nh i þ Dnð~r1; t1Þ½ � nh i þ Dnð~r2; t2Þ½ �h i
¼ nh i2þ Dnð~r1; t1ÞDnð~r2; t2Þh i;

ð9:4Þ

and the resulting time-dependent structure factor given as,

Sð~q; tÞ ¼ 1

N

ð

d3~r1

ð

d3~r2 nh i2þ Dnð~r1; t1ÞDnð~r2; t2Þh i
n o

e�i~q�ð~r1�~r2Þ: ð9:5Þ

The quantity Sð~q; tÞ, or its Fourier transform counterpart, Sð~q;oÞ ¼
Ð

Sð~q; tÞeiotdt, are both referred to as the dynamic structure factor.

Since the liquid remains disordered, it possesses the same rotational and

translational invariance as that of an amorphous solid and so, again, only the

relative positions of two density fluctuations,~r ¼~r1 �~r2, matter. Likewise, the

absolute time origin is irrelevant and what matters is only the difference

t ¼ t1 � t2. Taking these into account,

Sliqðq; tÞ ¼
1

N

ð

d3~r

ð

d3~r2 nh i2þ Dnð~r þ~r2; tÞDnð~r2; 0Þh i
n o

e�i~q�~r

¼ 1

N
nh i2

ð

d3~re�i~q�~r
ð

d3~r2 þ
ð

d3~re�i~q�~r
ð

d3~r2 Dnð~r þ~r2; tÞDnð~r2; 0Þh i
� �

:

ð9:6Þ

The integrations over d3~r2 correspond to sampling with the second search

vector at different possible origins. But because of the invariance, the result

cannot depend upon the specific choice of ~r2. Consequently, the result of

integrating over d3~r2 will be the volume of the scattering region, V, and so

Sliqðq; tÞ ¼
1

N
nh i2V ð2pÞ3dð~qÞ þ V

ð

d3~re�i~q�~r Dnð~r; tÞDnð0; 0Þh i
� �

¼ nh ið2pÞ3dð~qÞ þ
ð

d3~r Dnð~r; tÞDnð0; 0Þh i= nh ie�i~q�~r

¼ nh ið2pÞ3dð~qÞ þ
ð

d3~rGð~r; tÞe�i~q�~r;

ð9:7Þ
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where the van Hove space and time correlation function is introduced here as

Gð~r; tÞ 	 Dnð~r; tÞDnð0; 0Þh i= nh i: ð9:8Þ

Aside from the innocuous forward scattering, the characteristic space and time

dependence of the constantly evolving structure of a liquid is conveyed by a

Fourier transform of the van Hove correlation function. Formally, this function

represents the probability that if a density fluctuation is present at the origin at

time t ¼ 0, another will be found at~r at a later time t.

9.1.2 Brownian motion: the random walk revisited

As an example of liquid-like dynamics, we first consider the dynamics of

reasonably large-sized particles suspended in a solvent. In this instance, we

ignore the scattering of the solvent and instead only consider the “density

fluctuations” caused by movement of the macroparticles themselves. How do

these particles move about? As a result of the incessant jostling of the solvent

particles, the suspended particles experience a series of randomly directed

kicks and execute what is known as Brownian motion. The finite viscosity of

the solvent limits how far the macroparticle will move, and the result of these

random kicks gives rise to a random walk performed by the macroparticle.

In principle, the van Hove correlation function for diffusing particles con-

tains two contributions,

Gð~r; tÞ ¼ Gself ð~r; tÞ þ Gdistinctð~r; tÞ: ð9:9Þ

The self part is associated with motions in which the fluctuation (i.e. macro-

particle) present at (~r, t) is the result of the same particle starting from the

origin (~r ¼ 0, t¼ 0) and moving to that location at a later time. The distinct part

describes those situations in which the fluctuation at (~r, t) results from the

arrival of an altogether different particle at that location. Provided that our

sample of diffusing macroparticles is sufficiently dilute, we can safely ignore

Gdistinctðr; tÞ and associate the probability distribution of the random walk with

that of Gself ðr; tÞ alone.
Our interest then is in determining the probability that a random walker will

have arrived at~r some time t after starting off from the origin. Consider then a

1D random walk whose walker takes steps of length b. In any arbitrary step,

the probability that the walker will arrive at (x, t) is

Gðx; tÞ ¼ 1

2
Gðx� b; t � tÞ þ 1

2
Gðxþ b; t � tÞ: ð9:10Þ

The factor of one-half represents the equal odds that the walker will enter the

site in question from an adjacent site either to the left or right of the site. If we

apply a twofold Taylor expansion,

Gðx� b; t � tÞ ¼ Gðx; tÞ � t
@G

@t
� b

@G

@x
þ b2

2

@2G

@x2
þ Oðt2Þ: ð9:11Þ

142 Liquid dynamics



Then Eq. (9.10) can be rearranged (Ex. 1) to read,

@G

@t
¼ b2

2t

@2G

@x2
¼ D

@2G

@x2
; ð9:12Þ

where D ¼ b2=2t is known as the diffusion coefficient or diffusivity. Further-

more, if we recall that the mean-squared displacement of the random walk is

proportional to the number of steps executed, x2
	 


¼ Nb2 ¼ t=tð Þb2; then we

see that this mean-squared displacement is also given as x2
	 


¼ 2Dt.

Equation (9.12) is known as the diffusion equation and its solution (for an

initial walker at the origin) is the Gaussian,

Gðx; tÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffi

4pDt
p e�x2=4Dt; ð9:13Þ

which is illustrated together with a random walk trajectory in Fig. 9.2. Gener-

alizing this to 3D, we have

P
ro

b
a

b
ili

ty
 

Distance 

increasing 

time 

Figure 9.2 Probability distribution for the displacement of a diffusive particle. At t ¼ 0, the particle has not yet

moved and the probability is zero everywhere except at its starting location (i.e. a Dirac delta

function). Over time, the many possible random walk trajectories of the particle lead to spreading of

the probability distribution as described by Eq. (9.13).
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Gðr; tÞ ¼ Gðx; tÞGðy; tÞGðz; tÞ ¼ 1

4pDtð Þ3=2
e�r2=4Dt; ð9:14Þ

which is the solution to

@Gðr; tÞ
@t

¼ Dr2Gðr; tÞ: ð9:15Þ

Applying the Fourier transform to Eq. (9.15) then yields (Ex. 2) the following

condition for the dynamic structure factor:

@Sðq; tÞ
@t

¼ �q2DSðq; tÞ; ð9:16Þ

whose solution is

Sðq; tÞ ¼ Sðq; 0Þe�Dq2t: ð9:17Þ

One experimental technique for measuring S(q,t) for particles diffusing in a

solvent is photon correlation spectroscopy. An example for S(q,t) thus

obtained is shown in Fig. 9.3 for the scattering from a dilute suspension of

small polystyrene balls of diameter 2b � 0.1 micron in water. Analysis of the

decay provides a direct measure of the diffusion coefficient. In many instances,

the diffusion coefficient for diffusing macroparticles is related to the solution

viscosity by the Stokes–Einstein relation,

D ¼ kT

6pZb
; ð9:18Þ

D = 3.59 µm2/s
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Figure 9.3 Dynamic structure factor observed for the diffusion of 0.1 mm polystyrene spheres in water. Inset

figure is the same curve presented on a semi-log scale where the slope (see Eq. (9.17)) provides a

measure of the diffusivity.
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resulting from a combination of Einstein’s expression of the diffusivity,

D ¼ kT

z
ð9:19Þ

in terms of the drag coefficient, z, and Stokes’ relation, z ¼ 6pZb, for the drag

experienced by a spherical particle of radius b moving in a medium of

viscosity Z. In these situations, scattering from a solution of unknown macro-

particles together with knowledge of the solvent viscosity and temperature can

be used to determine the particle size (Ex. 5).

9.1.3 Hydrodynamic modes in liquids

In the previous example, we ignored the scattering from solvent in which the

macroparticles were dispersed, and considered only the scattering from the

macroparticles themselves. Imagine now that these macroparticles are

removed, leaving behind only the solvent, a molecular liquid, to scatter light.

How do these molecular particles move about? As we have alluded to earlier,

they execute some incessant jostling, continually bumping into one another.

Naively, we might think that they experience a similar Brownian motion to that

of the macroparticles discussed above. But, there is a difficulty here in that

the particles being kicked are also the ones doing the kicking! Furthermore, the

particles are now much smaller than the wavelength of visible light and the

density fluctuations being probed in the van Hove correlation function corres-

pond, not to the individual liquid molecules themselves, but to larger collec-

tions of molecules. In this case, the motion of this collection of particles is

described by the motion of a continuous density distribution wherein thermo-

dynamic forces drive the formation of density fluctuations and ultimately

determine their decay back to an equilibrium condition. Thus to describe the

motion, we need to consider the role of thermodynamic fluctuations inherent in

a liquid.

In a liquid at equilibrium, one requires only two independent thermo-

dynamic fields to determine the remaining properties. For our purposes, we

will use the entropy, S, and the pressure, P, such that any fluctuation in density

can be expressed as

Dnð~r; tÞ ¼ @n

@S

� �

P

DSð~r; tÞ þ @n

@P

� �

S

DPð~r; tÞ; ð9:20Þ

and the van Hove correlation function for these thermodynamic fluctuations,

expressed as

Gð~r; tÞ ¼ 1

nh i
@n

@S

� �2

P

DSð~r; tÞDSð0; 0Þh i þ 1

nh i
@n

@P

� �2

S

DPð~r; tÞDPð0; 0Þh i:

ð9:21Þ
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Note that, because S and P are independent fields, their fluctuations are

uncorrelated and the two cross terms (involving DSð~r; tÞDPð0; 0Þh i and

DPð~r; tÞDSð0; 0Þh i) necessarily vanish.

For a continuum fluid, the local density is governed by a set of conservation

laws known as the hydrodynamic equations. In addition to S and P, they

involve the density (n), the temperature (T ) and the local velocity (~uð~r; tÞ).
In their linearized form (appropriate to a fluid system with ~uh i ¼ 0 that is not

moving as a whole), these equations, expressed in terms of fluctuations, are:

@Dnð~r; tÞ
@t

þ nh i~r � D~uð~r; tÞ ¼ 0; ð9:22Þ

where fluctuation in speed is D~uð~r; tÞ 	~uð~r; tÞ � ~uh i ¼~uð~r; tÞ,

m nh i @D~uð~r; tÞ
@t

¼� ~r DPð~r; tÞð Þ þ Zsr2 D~uð~r; tÞð Þ

þ ZV þ 1

3
Zs

� �

~r ~r � D~uð~r; tÞ
� �

;

ð9:23Þ

wherem is the particle mass, ZS the shear viscosity and ZV the bulk viscosity, and

Th i @DSð~r; tÞ
@t

¼ kthr2 DTð~r; tÞð Þ; ð9:24Þ

where kth is the thermal conductivity and DTð~r; tÞ 	 Tð~r; tÞ � Th i is the

temperature fluctuation.

Whew! Where do these equations come from? The first (Eq. 9.22) is a

statement of the conservation of mass (per volume) and implies that, when the

density increases at some point, it does so by the influx of new particles.

The second equation (Eq. 9.23) is a statement of Newton’s second law for the

momentum per volume. The left-hand side contains the time derivative of the

momentum caused by (on the right-hand side) the applied force (�~rP) and a

complicated drag force associated with the viscous properties of the liquid. The

last equation (Eq. 9.24) is the heat equation. It is a combination of both conser-

vation of energy dQ ¼ TdS ¼ �~r �~jQ , and heat diffusion~jQ ¼ �kth~rT .

The first and second equations can be combined by taking the divergence of

Eq. (9.23) and substituting in Eq. (9.22) to eliminate D~uð~r; tÞ,

m
@2Dn

@t2
¼ ~r2 DPð Þ þ 1

nh i ZV þ 4

3
Zs

� �

@

@t
~r2

Dnð Þ
h i

: ð9:25Þ

Next, we need to eliminate Dn and DT to obtain equations relating only DS and

DP. Most generally,

Dn ¼ @n

@S

� �

P

DS þ @n

@P

� �

S

DP

DT ¼ @T

@S

� �

P

DS þ @T

@P

� �

S

DP:

ð9:26Þ
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Although it would be the proper thing to do, substitution of these into

Eq. (9.24) and Eq. (9.25) will lead to a set of coupled differential equations

whose solution is more involved than I wish to go into here. If the reader will

allow, I would like to assume for the moment, that

@n

@P

� �

S

>>
@n

@S

� �

P

and
@T

@S

� �

P

>>
@T

@P

� �

S

: ð9:27Þ

Some reasoning for this assumption is the impression that density is more

strongly altered by pressure than by entropy, and that temperature is more

strongly altered by entropy (i.e. heat) than by pressure. Under this assumption,

one can show that

Dn � @n

@P

� �

S

DP ¼ � nh i
V

@V

@P


 �

S

DP ¼ nh iwSDP ¼ 1

mu2
DP; ð9:28Þ

and

DT � @T

@S

� �

P

DS ¼ Th i
rCp


 �

DS; ð9:29Þ

where wS ¼ 1=ru2 is the bulk modulus, u is the adiabatic speed of sound, Cp is

the specific heat (per mass) at constant pressure and r ¼ m nh i is the mass

density. Again, the assumption made in Eq. (9.27) is NOT really correct, but if

we indulge it for the time being, substitution of Eq. (9.28) into Eq. (9.25) and

Eq. (9.29) into Eq. (9.24) then produces the following set of uncoupled

equations:

@2DP

@t2
¼ u2~r2 DPð Þ þ DV

@

@t
~r2 DPð Þ

h i

; ð9:30Þ

where,

DV ¼ 1

r
ZV þ 4

3
Zs

� �

; ð9:31Þ

and

@DS

@t
¼ kth

rCp

r2 DSð Þ ¼ DTr2 DSð Þ: ð9:32Þ

The astute reader may recognize in Eq. (9.30), the wave equation together with

some sort of damping contribution, and in Eq. (9.32), a diffusion equation

much like that of Eq. (9.15). We can now apply a Fourier transform to obtain,

@2DP

@t2
¼ �q2u2DP � q2DV

@DP

@t
; ð9:33Þ

@DS

@t
¼ �q2DTDS; ð9:34Þ
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whose solutions are

DPð~q; tÞ ¼ DPð~q; 0Þ expð�q2DV t=2Þ expð�ioB tÞ; ð9:35Þ

DSð~q; tÞ ¼ DSð~q; 0Þ expð�q2DT tÞ; ð9:36Þ

where oB ¼ qu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðqDV=2uÞ2
q

is approximately oB � qu in situations of

weak viscous damping. Again, the above results were obtained under the

assumption of Eq. (9.27). The true result, is slightly modified such that

DPð~q; tÞDPð~q; 0Þh i ¼ 1

g
DP2ð~q; 0Þ
	 


expð�q2GtÞ expð�ioB tÞ; ð9:37Þ

DSð~q; tÞDSð~q; 0Þh i ¼ g� 1

g
DS2ð~q; 0Þ
	 


expð�q2DT tÞ; ð9:38Þ

where g ¼ Cp=CV , G ¼ ð1=2Þ ðg� 1ÞDT þ DV½ �. The dynamic structure factor

is then given by Eq. (9.7) and Eq. (9.21) as

Sliqðq; tÞ ¼
1

nh i
@n

@S

� �2

P

DS2ð~q; 0Þ
	 
 g� 1

g
expð�q2DT tÞ

þ 1

nh i
@n

@P

� �2

S

DP2ð~q; 0Þ
	 
 1

g
expð�q2GtÞ expð�ioB tÞ;

ð9:39Þ

which, when Fourier transformed into frequency space, appears as a spectrum

of scattered light consisting of two contributions,

SRayleighð~q;oÞ ¼ FT Sentropyð~q; tÞ
� �

� Dn2ð~q; 0Þ
	 


nh i 1� 1

g

� �

DTq
2

o2 þ ðDTq2Þ2
;

ð9:40Þ

and

SBrillouinð~q;oÞ ¼ FT Spressureð~q; tÞ
� �

� Dn2ð~q; 0Þ
	 


nh i
1

g

Gq2

ðo� oBÞ2 þ ðGq2Þ2
þ Gq2

ðoþ oBÞ2 þ ðGq2Þ2

( )

:

ð9:41Þ

The resulting spectrum of scattered light is known as the Rayleigh–Bril-

louin spectrum, and is illustrated in Fig. 9.4. It is composed of three Lor-

entzian curves. One is centered at the frequency of the incident wave and two

others are symmetrically shifted by oB ¼ qu. The central curve (known as the

Rayleigh line) involves the thermal diffusivity, DT, and is associated with the

non-propagating decay of spontaneous density fluctuations through the diffu-

sion of heat. The other two lines (known as the Brillouin doublet) involve

the adiabatic speed of sound, u, and both the viscous damping, DV, as well

as a smaller contribution due to thermal diffusivity. The Brillouin lines
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represent the propagation of density fluctuations in the form of (damped)

sound waves traveling through the medium with speed u, and their frequency

shift can be viewed much like that of a Doppler shift. Measurement of the

Rayleigh–Brillouin spectrum thus allows for the determination of both the

thermal diffusivity and the (longitudinal) speed of sound in a liquid or solid.

Lastly, the total integrated intensity of the Rayleigh–Brillouin spectrum is

given as

ITOT /
ðþ1

�1
Sðq;oÞdo ¼ IR þ 2IB

¼ Dn2ð~q; 0Þ
	 


nh i 1� 1

g

� �

þ 1

g

� �

¼ Dn2ð~q; 0Þ
	 


nh i ; ð9:42Þ

and is seen to be proportional to the average square of the density fluctuations

which, as we observed in Chapter 7 (see Eq. (7.18)), can be expressed as

Dn2ð~q; 0Þ
	 


nh i2
¼ kT

V
wT ;

where

wT 	 1

nh i
@ nh i
@p

� �

T

ð9:43Þ
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w = 0wB  ª –q u wB  ª +q u

Figure 9.4 An illustration of the features in the Rayleigh–Brillouin spectrum of a simple liquid. A central

Rayleigh line arises solely from the decay of density fluctuations driven by thermal diffusivity, and is

flanked on either side by two Brillouin lines that are shifted in frequency by oB � qu. The two

Brillouin lines arise primarily from the propagation of density fluctuations in the form of acoustic

waves (with both viscous and thermal damping characterized by the linewidth, G).
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is the isothermal compressibility. Additionally, one sees that the ratio of the Rayleigh

intensity to that of the Brillouin doublet, known as the Landau–Placek ratio,

RLP ¼ IR

2IB
¼ 1� 1=gð Þ

1=g
¼ g� 1 ¼ CP

CV

� 1; ð9:44Þ

provides a direct measure of the heat capacity ratio, g ¼ CP=CV .

9.2 Glass transition

Earlier in this chapter, we commented on the key difference between a liquid

and a glass: a liquid possesses translational motion in which the particles are

free to wander around, while the glass does not. A glass is merely the solid that

forms when a liquid is sufficiently cooled without crystallization. Structurally,

both the liquid and the glass appear the same in terms of average particle

arrangements. Each is similarly disordered and described by a similar radial

distribution function or static structure factor. The difference is that, in the

liquid, the structure is continuously evolving on some characteristic time scale,

t, and by a series of structural relaxations, it traverses through multiple

(thermodynamically equivalent) configurations.

Since the static structure is not changing, what then signals the transition

from a liquid to a solid? As it happens there are several measurable properties

of the liquid that exhibit changes near the glass transition temperature, Tg. One

of these is the specific volume, illustrated in Fig. 9.5, whose temperature-
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Figure 9.5 The temperature dependence of the specific volume for a glass-forming liquid. Depending on the

cooling rate, a temperature is reached (the glass transition temperature) at which the thermal

expansivity changes abruptly, signaling the transition from a liquid to a solid.
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dependent slope (proportional to the thermal expansivity) is steeper above Tg
than below. Above Tg, a portion of the expansivity is associated with the

translational motions of the fluid. But below Tg, this translational motion is

lost as a consequence of solidification and the expansivity mimics that of a

crystalline solid for which only vibrational motions remain.

Another feature of the transition is its dependence on the rate at which the

liquid is being cooled. As illustrated in Fig. 9.5, the transition occurs at a higher

temperature when cooled rapidly, but at a lower temperature when cooled more

slowly. This cooling rate feature is referred to by some rheologists as aDeborah

effect, and is what makes the glass transition notoriously ambiguous. Because

the transition involves no spontaneous change in structure, it inherently marks a

temperature at which translational motions cease. However, there are many

processes in nature, like the flow of glaciers in geology, which actually flow

despite our human limitations to observe that flow. Who is to say when flow

actually ceases? In the Deborah effect, the structural relaxation time (t) of the

fluid itself establishes a condition for observational time scales. If properties of

the system are being observed on time scales shorter than t, the properties will

resemble that of a solid. Conversely, if the properties are observed over time

scales longer than t, the liquid behavior will appear.

9.2.1 Kauzmann paradox

The rate at which we cool the liquid thus establishes an observational time

scale for the transfer of heat into and out of the liquid. This then has important

consequences for the specific heat of the system. The temperature-dependent

variation of the specific heat, Cp, is illustrated in Fig. 9.6 and, unsurprisingly,
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Figure 9.6 An illustration of the temperature variation of the specific heat for both glass formation and

crystallization. For vitrification, the entropy loss corresponds to area AþB. For crystallization, the entropy

loss corresponds to area B plus a contribution, Lf=Tf , due to latent heat of fusion. The Kauzmann

temperature is reached when the entropy corresponding to area A equals that due to latent heat, Lf=Tf .
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shows a cooling rate dependence. Above Tg, Cp exceeds that of the corres-

ponding ordered solid as a result of the accessibility of translational degrees of

freedom, in addition to vibrational degrees of freedom. Near the transition, the

specific heat decreases rather abruptly to values comparable to (but slightly

higher than) that of the crystal, as these translational degrees of freedom

become inaccessible for the given observational time scale employed.

Consider now the evolution of the entropy of both the liquid and crystal

phases as they are cooled below the melting point, Tf . As each is cooled, it

loses entropy in amounts that are proportional to the area under each specific

heat curve in Fig. 9.6. For example, the entropy of the liquid at any tempera-

ture T < Tf can be expressed as

SliqðTÞ ¼ So �
ð

Tf

T

Cp;liq

T
dT ; ð9:45Þ

where So is the entropy of the liquid just above Tf. Because the specific heat of

the liquid is larger than that of the crystal, it loses entropy more rapidly with

cooling. However, the crystal loses a large chunk of entropy at Tf before

cooling proceeds. This abrupt entropy loss is due to the ordering that occurs

when the crystal state forms, and is given by Sf ¼ Lf =Tf , where Lf is the latent

heat of fusion. Thus for the crystal, the entropy at any temperature T < Tf is

ScrystðTÞ ¼ So �
Lf

Tf
�

ð

Tf

T

Cp;cryst

T
dT : ð9:46Þ

Kauzmann (1948) was the first to point out a predicament associated with

the glass transition. He considered the evolution, with cooling, of the differ-

ence between the entropy of the liquid and that of the crystal,

DSexcessðTÞ 	 SliqðTÞ � ScrystðTÞ ¼
Lf

Tf
�

ð

Tf

T

Cp;liq � Cp;cryst

� �

T
dT ; ð9:47Þ

and recognized that the value of the integral, corresponding to the cross-

hatched area labeled A in Fig. 9.6, could be made arbitrarily large by extending

the glass transition to lower temperatures by more gradual cooling rates. In

fact, at some temperature TK where

Lf

Tf
¼

ð

Tf

TK

Cp;liq � Cp;cryst

� �

T
dT ; ð9:48Þ

the entropy of the liquid would decrease below that of the crystal, in contra-

diction to traditional interpretations of entropy as a measure of disorder,

embodied in the second law of thermodynamics.
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The resolution to this apparent paradox lies in how the structural relaxation

time of the liquid increases rapidly with cooling. In many instances, the

relaxation time is proportional to the viscosity, and near Tg, increases approxi-

mately as

t / Z � Zo exp E=ðT � ToÞf g: ð9:49Þ

Numerous experimental studies have demonstrated a strong correlation

between the divergence point To and the Kauzmann temperature TK. Thus, it

appears that the entropy paradox outlined above is narrowly avoided as no

observational time scale exists for this entropy catastrophe to be observed.

9.2.2 Structural relaxation

What happens to Sðq;oÞ near the glass transition? With cooling, the Brillouin

lines first broaden (due to the increasing viscosity of the liquid) but then

narrow near Tg and shift to higher frequency as the medium begins to appear

elastic to propagating sound waves. At these temperatures it is also possible to

observe the emergence of an additional pair of Brillouin lines corresponding to

the propagation of transverse waves. As for the central Rayleigh line, it is

gradually encroached upon by a new, non-hydrodynamic (independent of q

for q�1 >> particle spacings) mode whose linewidth narrows as the liquid
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Figure 9.7 The dynamic structure factor for the structural relaxation in a molten oxide glass, B2O3, at 631 K.

The solid curve visible beneath the data points is a fit using the stretched exponential (Eq. (9.50))

and the dashed curve is a regular exponential (b¼ 1) for comparison. The inset figure shows

how the relaxation time increases dramatically with decreasing temperature and is well

represented by Eq. (9.49) with E ¼ 6572 K and To ¼ 331 K.
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viscosity increases. This new mode reflects the growing dominance of visco-

elastic relaxation in the decay of density fluctuations. In the time domain, it

appears as a contribution to the dynamic structure factor of the form,

Sðq; tÞ � exp �ðt=tÞb
h i

; ð9:50Þ

known as a “stretched” exponential decay. This non-exponential decay is a

hallmark of dynamics in amorphous matter and an example is shown in

Fig. 9.7 for supercooled B2O3. It is believed to represent a feature of the

disordered state in which multiple density fluctuations decay independently,

but with a distribution of relaxation time scales, g (ti), such that

Sðq; tÞ �
X

i

gðtiÞe�t=tidti � exp �ðt=tÞb
h i

: ð9:51Þ

9.3 Polymer liquids

Polymer liquids are especially adept at vitrifying into the glassy state. Recall

from our initial discussion in Chapter 8 regarding polymer structure that

polymers consist of large molecules constructed of very many repeating

monomer units that form a long chain. The structure of these chains resembles

a random walk and the chains thus form into a coiled configuration in the

liquid state. Each coil is generally entangled with other coils, much like the

strands of spaghetti in a bowl of pasta, and these topological constraints

severely limit the prospects for crystallization to occur.

The constraints also produce somewhat unique dynamics in the liquid

state that are accompanied by special viscoelastic properties common to

rubbery materials. These unique properties stem from the entropy associated

with the manifold numbers of possible configurations that each polymer coil

can assume. To begin our tour of polymer dynamics, consider a single

polymer molecule consisting of N repeat units each of size b whose one

end is fixed at the origin, as illustrated in Fig. 9.8. The coil is described by a

random walk and, as we observed for Brownian motion earlier in this

chapter, the probability of locating the opposite end (or the walker) at ~r is

given by Eq. (9.15),

Pð~rÞ ¼ 3

2p r2h i

� �3=2

exp � 3r2

2 r2h i

� �

; ð9:52Þ

where r2
	 


¼ 6Dt ¼ Nb2 is the mean-squared displacement or average square

separation between the ends of the polymer coil.

This probability also provides a direct measure of the number of config-

urations (microstates) the polymer chain can assume for a given macrostate

corresponding to the end-to-end separation distance r. By way of an
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at the origin, the probability that

the other end is a distance r
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illustration, consider the situation when the chain is stretched taut such that

r ¼ Nb. This particular macrostate has only one possible configuration and

a correspondingly small probability of occurring. By contrast, the most

probable configuration is when the two ends are close together. In that

instance, there exist a large variety of ways in which the chain can be

twisted and bent to produce this end-to-end macrostate. Thus we can

roughly associate the multiplicity, W, of a given macrostate with the corres-

ponding probability of a given end-to-end separation and define the config-

urational entropy as

Sc ¼ kB lnW / kB lnPð~rÞ � Scð0Þ � kB
3r2

2 r2h i : ð9:53Þ

Interestingly, this configurational entropy provides an inherent restoring

force to the coil as a whole. To see this, consider that we now apply a force,

f, to the free end of our coil, shown in Fig. 9.8. As we pull on the free end, we

perform an amount of work on the coil, dW ¼ f dr ¼ dF, which must show up

as an increase in its free energy, F ¼ U – TS, such that

f ¼ @F

@r
¼ @U

@r
� T

@Sc
@r

¼ @U

@r
þ 3kBT

r2h i r: ð9:54Þ

If our pulling only results in uncoiling the polymer without stretching the

bonds between the monomer units, then the internal energy of the coil, U, is

unaffected and we find that our applied force is countered by a spring-like

restoring force,

f � � 3kBT

r2h i r ¼ �Cr; ð9:55Þ

that arises solely from our attempt to “de-maximize” the configurational

entropy of the coil.

9.3.1 Rouse model

The simplest successful model for polymer dynamics is the so-called Rouse

model in which the dynamics of a polymer coil are governed by two forces:

the entropic restoring force derived above and a drag force proportional to the

velocity. In the model, a long polymer molecule is subdivided into alternating

segments, as illustrated in Fig. 9.9. One segment is treated as a solid “bead”

and the other as an entropic “spring” such that the entire molecule is

decomposed into a series of M beads separated by elastic (entropic) springs.

In order for the spring segment to act as an entropic spring, the size of a

segment, a, must be sufficiently large that the twists and bends contained

within will behave in accordance with Eq. (9.55). From here, the displace-

ment, D~rj, of a given ( jth) bead from equilibrium is governed by the two
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forces discussed above, along with the random Brownian forces needed to

disturb it in the first place:

m
d2D~rj
dt2

¼ ~fjþ1 þ~fj�1 � z
dD~rj
dt

þ~frandom

¼ CðD~rjþ1 � D~rjÞ � CðD~rj � D~rj�1Þ � z
dD~rj
dt

þ~frandom:

ð9:56Þ

The beads of the chain are sufficiently damped that the inertial term in Eq. (9.56)

can be neglected. Also, because the Brownian forces are random, their time

averaged effect vanishes and so the displacement of the jth bead is given by,

dD~rj
dt

¼ C

z
ðD~rjþ1 þ D~rj�1 � 2D~rjÞ: ð9:57Þ

This vector equation corresponds to three independent equations, one for each

direction (x, y and z) in space, that have a similar form,

dDxj

dt
¼ C

z
ðDxjþ1 þ Dxj�1 � 2DxjÞ; ð9:58Þ

and similar wave-like solutions of the form,

DxjðtÞ ¼
X

modes;K

xo;K cosð jfKÞ
� �

expð�t=tKÞ; ð9:59Þ

where

t�1
K ¼ 2C

z
ð1� cosfKÞ ¼

4C

z
sin2ðfK=2Þ: ð9:60Þ

j −1

j + 1j

a

Figure 9.9 The Rouse “bead and spring” model for a polymer coil. A single coil is partitioned into alternating

Rouse segments of size a. One segment (spring) represents the entropic forces that result when

the coil is stretched. The other segment (bead) represents the viscous drag experienced by the

coil when displaced in a fluid of other coils.
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What does this solution mean? In Eq. (9.59) we see that the initial displace-

ment of a bead is given by the bracketed term summed over a limited set of

allowed Rouse modes that are consistent with the boundary conditions of the

chain. Because the ends of the chain are unrestricted, these allowed modes

(labeled by K) assume the same set of wavelengths as the standing wave

patterns in an organ pipe (see Fig. 9.10), such that the relative phase angle

between adjacent beads is

fK ¼ p

ðM � 1ÞK; K ¼ 1; 2; 3; . . . ; ðM � 1Þ: ð9:61Þ

In Eq. (9.59) we see that the initial deformation of the chain is some linear

combination of these allowed modes and that the deformation associated with

a given mode decays back to equilibrium with a characteristic relaxation rate,

given by Eq. (9.60). The overall relaxation of a Rouse chain is then ultimately

limited by the relaxation of its slowest, fundamental mode for which

f1 ¼ p=ðM � 1Þ. The relaxation time of this fundamental mode is

t�1
1 ¼ 4C

z
sin2ðp=2ðM � 1ÞÞ � C

z

p

M � 1

� �2

) t1 / N 2; ð9:62Þ

and is seen to be proportional to the square of the number of monomers that

make up the polymer molecule.

9.3.2 Reptation

The fundamental Rouse mode suggests a quadratic dependence of the visco-

elastic relaxation time on the chain length or molecular weight of the polymer

that is indeed seen for measurements conducted on polymers of varying

molecular weight, as shown in Fig. 9.11. However, this success is restricted
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(a)

Rouse modes

τ

2τ

Figure 9.10 (a) An illustration of the first two lowest frequency Rouse modes for a polymer coil and (b) the

corresponding standing wave patterns for sound in an open organ pipe, illustrating the equivalent

number of nodes.
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to low molecular weights. Above some critical chain length, the relaxation

time increases more dramatically and measurements favor

t / N n; 3:3 < n < 3:7: ð9:63Þ

It appears then that the simple Rouse model breaks down at larger molecu-

lar weights. Why is this? One thing that is missing from the Rouse model is

the influence of other chains in the melt whose entanglements place add-

itional constraints on the possible configurations allowed for any given

polymer coil. At sufficiently high molecular weight, these entanglements

will dominate and restrict the motion of a coil to that along a tube, as

illustrated in Fig. 9.12. The contour of this tube matches the contour of the

coil itself and represents the numerous entanglements produced by other

polymer strands in the melt. The tube limits the lateral motions of the chain

thus suppressing the wave-like Rouse modes. Instead, the polymer chain is

forced to move along the contour of the tube by slithering, much in the

fashion of a snake or other reptilian creature. For this reason, this new mode
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Figure 9.11 Structural relaxation time for a polymer melt of cis-polyisoprene obtained by dielectric

spectroscopy (adapted from Boese and Kremer (1990).) At low molecular weight, the relaxation

time exhibits a quadratic dependence consistent with the excitation of Rouse modes (see Eq. (9.62).)

However, for long polymer chains with a molecular weight greater than 104, Rouse modes

are suppressed and the relaxation is controlled by reptation.
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of polymer motion is commonly referred to as reptation and is described by

the reptation model.

In the reptation model, we inquire as to the characteristic time it takes a

polymer chain to diffuse the entire length of its tube and thereby escape. This

motion is effectively one-dimensional as it occurs along the contour of a tube

of length l ¼ Ma. Consider the motion of the central bead of the chain. We can

think of its motion as that of a one-dimensional random walk along the tube

whose mean-squared displacement after a time t was given earlier as

x2
	 


¼ 2Dt. The diffusion coefficient for this single bead is however signifi-

cantly larger as it must pull and push all the other beads along with it. From the

Einstein relation (Eq. (9.19)), the diffusion coefficient is

D ¼ kBT

zchain
/ kBT

Mz
; ð9:64Þ

and so the characteristic escape time – the time required for the mean-squared

displacement to match the tube length – is

tescape �
x2
	 


2D
� l2tube

2D
� M 2a2

2kBT=Mz
� M 3 a2

2kBT=z

� �

/ N 3: ð9:65Þ

While the reptation model fails to predict the precise molecular weight

dependence seen experimentally, it does provide approximately the correct

dependence and, given its simplicity, provides a starting point for more

advanced approaches.

reptation tube

Figure 9.12 In the reptation model, motion of the polymer coil appears as a one-dimensional random

walk restricted to the contour of the polymer coil itself. The restriction arises from entanglements

of other neighboring polymer chains (illustrated in lower figure) which successfully suppress

Rouse modes at high molecular weights.
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Summary

c The dynamic structure factor is a time-dependent corollary to the static

structure factor and is related by a Fourier transform to the van Hove

space and time correlation function.

c Macromolecules in a solvent execute a diffusional motion known as

Brownian motion which can be modeled by a random walk.

c The Rayleigh–Brillouin spectrum of a liquid results from density

fluctuations. The central Rayleigh line is caused by non-propagating

thermal diffusion. The two Brillouin lines are caused by propagating

sound waves.

c The glass transition occurs when translational motion in a liquid is

arrested. The transition point occurs when the structural relaxation time

exceeds that of the observer.

c Low molecular weight polymers exhibit dynamics that are adequately

described by the Rouse model. At higher molecular weights entangle-

ments begin to dominate the dynamics resulting in reptational motion.

Exercises

9.1. Show how Eq. (9.12) arises from Eq. (9.11).

9.2. Show how Eq. (9.16) follows from Eq. (9.15). (Hint: the dot product~q �~r
can be an impediment so you may want to work this out in Cartesian

coordinates. Be prepared to integrate by parts a couple of times.)

9.3. Verify that Eq. (9.35) is indeed the solution to Eq. (9.33).

9.4. Discuss what would happen if the polymer coils of the Rouse model

were grafted onto a substrate. That is, one end of each coil was attached

to a rigid surface. How might this affect the Rouse modes? Determine the

new fundamental Rouse mode for this situation.

9.5. Consider the results of the dynamic light scattering experiment shown in

Fig. 9.3, in which the diffusivity of spherical particles in water was

obtained at room temperature (20 �C). The manufacturer specifies that

the spheres have a diameter of 109 nm. What diameter is obtained from

the measurement? (Note: you will need to locate the viscosity of water

elsewhere.)

9.6. Shown in Fig. 9.13 are measurements of the longitudinal Brillouin lines

for a glassforming liquid of refractive index n � 1.6 at several tempera-

tures (in K). The data were collected using 514 nm light collected in a
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backscattered direction. Determine the longitudinal speed of sound for

each set of Brillouin doublets and plot the result against temperature. Is

there a discontinuity and, if so, why?

9.7. Consider a “biased” version of the 1D random walk problem for

which Eq. (9.10) would be replaced by Gðx; tÞ ¼ Gðx� b; t � tÞ �
Rþ Gðxþ b; t � tÞ � L, where R and L are the (unequal) probabilities

that a walker will select to move right or left, respectively. For the

biased walk, we assume bias is in the forward direction, so that R > L.

(a) Show that to the same order as in Eq. (9.11), the biased walk obeys

the following relation: @G@t ¼ �u @G
@x þ D @2G

@x2 , where u ¼ ðR� LÞb=t is

the drift velocity. (b) Show also that the solution to this relation (for a

particle starting at the origin) is given by Gðx; tÞ ¼ 1
ffiffiffiffiffiffiffi

4pDt
p e�ðx�utÞ2=4Dt,

and represents the same spreading as illustrated in Fig. (9.2), only in

which the center of the distribution is displaced uniformly in time.

9.8. The pieces of glass found in windows of medieval cathedrals are typic-

ally thicker at the bottom than at the top and many have speculated that

this is a consequence of the gradual flow of the glass (as an equilibrium

liquid) over the past 800 years. Modern experiments with glasses pro-

duced using medieval compositions show temperature-dependent viscos-

ity as in Eq. (9.49) with Zo ¼ 6.3 � 10�5 Pas, E ¼ 12574 K, and To ¼
470 K. Given that the structural relaxation time is approximately

th i ¼ Z=G1, where the high frequency shear modulus, G1, is typically

30 GPa, estimate the temperature at which a medieval glass would need

to be maintained in order for it to exhibit any significant flow in 800

years. What does this tell you regarding the speculation that medieval

glass has been flowing over the centuries? Explain your answer.
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9.9. Derive the Einstein relation of Eq. (9.19) by considering the ensemble-

averaged dynamics of a Brownian particle of mass m whose equation

of motion is given by m d2~r
dt2

¼~frand � z d~r
dt
, where ~frand is a random

force provided by the solvent molecules. Hint: you might begin by

verifying the following two identities: dr2

dt
¼ d

dt
~r �~rð Þ ¼ 2 ~r � d~r

dt

� �

and

~r � d2~r
dt2

¼ d
dt

~r � d~r
dt

� �

� d~r
dt

� �2
.
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10 Crystal vibrations

Introduction

In the last chapter, we investigated the dynamics of liquids whose particles

are free to wander about due to the reasonably weak level of inter-particle

bonding. In a solid (crystal or glass), bonding between particles is stronger

and the translational motion of the particles is arrested. Nevertheless, these

“solid” particles continue to move and execute small, localized vibrations

about a fixed point in space. In this chapter and the next, we investigate the

nature of this vibrational motion and its impact on the thermal properties of a

solid. Here we begin by considering a simple model of masses connected by

ideal springs to demonstrate how vibrations of individual atoms are, in

reality, a consequence of propagating waves traveling through the crystal

lattice. In order to connect these waves with the quantum mechanical per-

spective of each atom behaving as a quantized harmonic oscillator, we find

ourselves introducing the concept of a quantum of elastic wave, known as a

phonon.

An important outcome of our development of quantized elastic waves is a

growing appreciation for a special region of reciprocal space known as the

Brillouin zone, which is populated by all the wave vectors, K, corresponding to

allowed phonon waves in the crystal. For phonons whose K matches the edge

of this zone, significant Bragg scattering results, to produce two equivalent

standing wave patterns separated by an energy gap. We will revisit the

Brillouin zone often in the chapters to come, and we will begin to appreciate

the significance of this boundary for the motion of all waves that attempt to

travel within a crystal.

10.1 Monatomic basis

A crystal is classified as a solid, but this does not imply that it is

devoid of motion. At a microscopic level the atoms of the crystal lattice

vibrate, and these vibrations ultimately control the thermodynamic prop-

erties of the solid. As discussed in Chapter 3, the bonding between any

two particles is described by a pairwise interaction, uðrijÞ, that contains
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both attractive and repulsive interactions. As illustrated for a 1D lattice

in Fig. 10.1, each particle favors a point of stable equilibrium where no

net force is experienced. When displaced from this point of equilibrium

by ~a, the particle experiences a restoring force, which for sufficiently

small displacements is well-approximated by Hooke’s law for ideal

springs,

~Fð~aÞ � �C1~a; ð10:1Þ

with a spring constant C1 that generally depends upon the direction of dis-

placement (i.e. longitudinal or transverse). In principle, there may be spring-

like interactions between other than nearest-neighbor particles and these are

then accommodated by higher-order spring connections (C2,C3, . . . etc.).

Because these higher-order springs are presumably much weaker, we can

ignore them for the time being.

We begin our analysis of vibrational motions by considering the 1D crystal,

shown in Fig. 10.1, of identical particles each of mass m interacting via

interconnecting springs. Although the figure suggests the case of longitudinal

displacements, the analysis presented below applies equally well to transverse

displacements. Since the 1D crystal contains an extended collection of coupled

oscillators, it should come as no surprise that any given particle will not

oscillate completely independent of its neighbors, but that the collection of

particles will oscillate in some concerted manner giving rise to waves, such

that the displacement of a particle at x is

aðx; tÞ ¼ A exp iðKx� otÞ½ �: ð10:2Þ

The motion of a particle at x is thus governed by the angular frequency o,

which in turn depends upon the wavelength (or wave vector K ¼ 2p=l) of

the wave. Waves in a continuum travel with a fixed speed u for which

o ¼ uK. However, in the case of a discrete chain of particles, this

d

aj+1ajaj−1aj−2 aj+2

C3

C2

C1

Figure 10.1 Elastic model of a one-dimensional monatomic crystal consisting of particles of mass m separated

by springs of spring constant C1. The upper string shows masses at their equilibrium positions.

The lower string shows masses when they are displaced from equilibrium. Also, shown as weaker

springs, are possible higher-order interactions between next-nearest neighbors and beyond.
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relationship between o and K will eventually fail as the wavelength shortens

towards that of the spacing between the particles, where the continuum

picture breaks down. In the following, we seek to develop the relationship

between o and K, known as a dispersion relation, which governs these

waves in a discrete lattice.

Suppose a plane wave (see Eq. (10.2)) is propagating through the crystal

along the x-axis. How is this traveling wave constrained by the elastic forces at

a given location? Because the equilibrium positions of the particles are

arranged in an orderly manner, we can label each by the index j and express

the spatial phase in terms of the lattice spacing, d, such that the displacement of

the jth particle from its equilibrium is:

aðx ¼ jd; tÞ ¼ ajðtÞ ¼ A exp iðKjd � otÞ½ �: ð10:3Þ

To obtain an equation of motion for the jth particle, we need to determine the

forces acting upon it. There are two forces: one arising from the spring to

the left (which connects the particle to the ( j�1)th particle) and the spring to

the right (which connects the particle to the ( jþ1)th particle). In each, the force

is proportional to the net extension, Dl, of the spring. To the left, the force is

given (see Fig. 10.1) by

F
j�1
j ¼ �C1Dl� ¼ �C1 ajðtÞ � aj�1ðtÞ

� �

; ð10:4Þ

and to the right, the force is given by

F
jþ1
j ¼ C1Dlþ ¼ C1 ajþ1ðtÞ � ajðtÞ

� �

: ð10:5Þ

Hence the net force on the jth particle is given by

Fnet
j ¼ C1 ajþ1ðtÞ þ aj�1ðtÞ � 2ajðtÞ

� �

¼ m
d2ajðtÞ
dt2

¼ �mo2ajðtÞ; ð10:6Þ

where Newton’s second law has been included. We now choose solutions of

the form:

aj�1ðtÞ ¼ A exp iðKðj� 1Þd � otÞ½ � ¼ ajðtÞe�iKd

ajþ1ðtÞ ¼ A exp iðKðjþ 1Þd � otÞ½ � ¼ ajðtÞeþiKd ;
ð10:7Þ

and obtain from Eq. (10.6),

C1 ajðtÞeþiKd þ ajðtÞe�iKd � 2ajðtÞ
� �

¼ �mo2ajðtÞ: ð10:8Þ

This can be rearranged to obtain

o2 ¼ �C1

m
eþiKd þ e�iKd � 2
� �

¼ 4C1

m
sin2ðKd=2Þ; ð10:9Þ

which relates the frequency of the wave to its wavelength and is thus the

dispersion relation we desire.
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10.1.1 Dispersion relation

Let us now examine some of the features of this dispersion relation (plotted in

Fig. 10.2) in closer detail. We begin in the long wavelength limit (near K ¼ 0),

where Eq. (10.9) can be expanded for small argument as:

o � 2

ffiffiffiffiffiffi

C1

m

r

Kd

2
¼

ffiffiffiffiffiffiffiffiffi

C1d

m=d

s
" #

K: ð10:10Þ

The quantity in brackets has been arranged on purpose to illuminate the

similarity to that for the speed of a wave on a string,

uo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Tension

mass=length

s

¼
ffiffiffiffi

T

m

s

¼
ffiffiffiffiffiffiffiffiffi

C1d

m=d

s

; ð10:11Þ

where T¼ C1d is the tension, and m¼ m/d is the mass per unit length. Thus we

find, in the long wavelength limit, the waves in a crystal propagate like

acoustical waves in a continuum, for which

uo ¼
o

K
¼ f l: ð10:12Þ

In the short wavelength limit, we see from Fig. 10.2 that the frequency

approaches a limiting constant value, omax ¼ 2

ffiffiffiffi

C1

m

q

, as K approaches values

of � p=d. Clearly there is an upper limit to the frequency associated with this

special value of K. To appreciate this, consider the group velocity of the wave

given by the slope of Fig. 10.2, or from a derivative of Eq. (10.9):

ugroup ¼
do

dK
¼ uo cosðKd=2Þ: ð10:13Þ

The group velocity is a measure of energy propagation and is seen to vanish at

K ¼ � p=d. What is happening here? Apparently, the energy carried by elastic

 

 

d

ππ

d

4C1

m

0

Brillouin Zone 

ω
2

K

+–

Figure 10.2 Dispersion curve (Eq. (10.9)) for the one-dimensional monatomic crystal with the limits imposed

by the first Brillouin zone.
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waves is no longer moving from one location to another, but rather staying in

place. Indeed, K ¼ � p=d corresponds to l ¼ 2d, so adjacent particles are

moving exactly out of phase with one another to produce the appearance of a

non-propagating, standing wave.

10.1.2 Brillouin zone

Extension of the above analysis to higher dimensions comes with several

complications. Bonds along different crystal directions generally have differ-

ent spring constants, and waves traveling along any direction will not neces-

sarily conform to the 1D treatment above. However, for waves traveling along

the [100], [110] and [111] directions in the simple cubic system, the particles in

the corresponding planes move in unison and can be treated one-dimensionally

with d now corresponding to the spacing between the planes.

Additionally, in the three-dimensional situation, the unique wave number

K ¼ � p=d, where the elastic wave assumes a standing wave behavior,

corresponds to the edge of what is referred to as the first Brillouin zone. For

elastic waves, this edge condition corresponds to the smallest meaningful

wavelength for an elastic wave; i.e. a wavelength in which each adjacent atom

moves exactly out of phase with its neighbor. Since the lattice consists of

discrete atoms, there is no possibility for any elastic wave of shorter wave-

length, as that would imply that there is some mythical mass present, in

between the particles, that is oscillating. In reality, no such mass exists. This

is quite different from electromagnetic waves traveling in the crystal, whose

wavelength is not limited by these discrete pieces of mass.

Bragg diffraction and the Brillouin zone

There is, nevertheless, an interesting significance about the edge of the first

Brillouin zone which plays a role for both elastic waves and electromagnetic

waves (as well as other waves) traveling through the lattice. The edge marks a

sort of “resonance” between the wave and the periodic structure of the crystal,

wherein the conditions exist for strong constructive interference to occur. To

see this, let us return to the subject of Bragg scattering for a moment. In

Chapter 6, we observed that one of the expressions (see Eq. (6.18)) for the

Bragg scattering condition was that

� 2~ki � ~Ghkl ¼ ~Ghkl

�

�

�

�

�

�

2

; ð10:14Þ

or

�~ki �
~Ghkl

2

 !

¼
~Ghkl

2

�

�

�

�

�

�

�

�

�

�

2

: ð10:15Þ
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Consider the implication of this statement as it appears vectorially in the

reciprocal space (~Ghkl), as illustrated in Fig. 10.3a. The condition for Bragg

reflection, given by Eq. (10.15), indicates that the incident wave vector must

have both a magnitude and direction such that its vector terminates on the

edge of a Brillouin zone (so that the projection of �~ki with any ~Ghkl equals

half the size of Ghkl). These special k “resonate” with the crystal structure in

the sense that the corresponding waves will constructively interfere to pro-

duce strong Bragg scattering with a scattered wave vector~ks also terminating

on the same Brillouin zone edge. Herein lies the resonant feature of the

Brillouin zone. Multiple scattering occurs in which the scattered wave (~ks) is

itself scattered by the Brillouin zone back into the original incident wave ~ki
(which is scattered back into ~ks, ad infinitum). Moreover, you may recognize

that the cell formed by a Brillouin zone boundary is a certain primitive cell

that we have already encountered: it is in fact the Wigner–Seitz primitive cell

(constructed not in real space, but in the reciprocal space defined by the

reciprocal lattice). In addition to the first Brillouin zone, there exist also

higher-order Brillouin zones (2nd, 3rd, etc.) shown in Fig. 10.3b, each with

equal volume. These higher-order zones pertain to wave numbers in excess of

those that are meaningful for elastic waves, but which are pertinent to other

waves (e.g. electromagnetic) for which wavelengths shorter than 2d remain

meaningful.

1st Brillouin Zone

2nd 
Brillouin Zone

3rd 
Brillouin Zone 

(b)

reciprocal space lattice

(a)

G100 

G010 

−ki

ki 
ks 

1st 
Brillouin zone

Figure 10.3 (a) The Bragg scattering condition shown vectorially for the first Brillouin zone. Bragg diffraction

occurs only for wave vectors terminating on a Brillouin zone boundary, for which the projection

of �~ki onto~Ghkl equals half the reciprocal lattice vector. In these instances the scattered

wave (~ks) appears also to terminate at the Brillouin zone boundary. (b) Higher-order Brillouin zones

obtained by successive Wigner–Seitz construction.
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10.1.3 Boundary conditions and allowed modes

In our development of the dispersion relation for a 1Dmonatomic crystal, we have

assumed that the crystal extended left and right indefinitely. But in real crystals, this

is not the case and the presence of a finite boundary places additional constraints on

wavelengths allowed to propagate. For example, if the particles at either end of the

chain were rigidly fixed, the waves would be limited to the same discrete set of

wavelengths, corresponding to the familiar standing waves of a string, ln ¼ 2L=n,

where L is the length. More generally, these end atoms are not fixed, but the finite

size of the crystal nevertheless induces restrictions in the allowed wavelengths, or

allowed “modes”, of wave vector K. To establish the restricted set of allowed

modes in a finite crystal of size L¼Nd, imagine firstly an infinite-sized crystal that

is partitioned into (laboratory-sized) pieces each of size L, as illustrated for a 2D

crystal in Fig. 10.4. Each partitioned sub-crystal should be equivalent to any other

and so the waves that travel from one into the next must be restricted so that each

wave arrives identically into each partitioned crystal. Hence,

ajðtÞ ¼ A exp iðKjd � otÞ½ � ¼ ajþLðtÞ ¼ A exp iðKð jþ NÞd � otÞ½ �; ð10:16Þ
or,

exp iKNdð Þ ¼ 1: ð10:17Þ
For this condition (known as a periodic boundary condition) to be satisfied, the

allowed modes are restricted to those,

Kn ¼ � 2p

Nd
;� 4p

Nd
;� 6p

Nd
; � � � � p

d
¼ �n

2p

Nd
; n ¼ 1; 2; 3; . . .N=2;

ð10:18Þ

L

L

Figure 10.4 Periodic boundary conditions. An infinite crystal is partitioned into equivalent crystals of realistic

size L. For each crystal to contain an equivalent set of discrete modes, the elastic waves

must match at the partition boundary.
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for which Eq. (10.17) is satisfied. Note that for the 1D crystal, the total number

of allowed modes just equals the number of particles, N, in a chain of length

L ¼ Nd. For a 3D crystal, the allowed modes in each direction are identically

restricted so that a crystal of size L3 ¼ N3d3 has exactly as many allowed

modes as it has particles.

10.1.4 Phonons

As discussed above, the finite extent of the crystal sets restrictions on the

allowed wavelengths of elastic waves. Consequently, the frequencies of the

waves described by the dispersion relation (Eq. 10.9) are similarly restricted to

a limited set of allowed values. What does this mean for the displacements of

any given particle? Suppose just one mode of wave number K happens to be

active in the crystal. Then, each particle is oscillating at the corresponding

frequency, oK , given by the dispersion relation for that particular mode, albeit

with a differing phase from its neighbor. Individually, each particle acts as a

quantum mechanical harmonic oscillator and additional energy added must

appear in the form of quanta of an amount �hoK , as illustrated by the energy

level diagram in Fig. 10.5a, where the energy levels are given by

EðKÞ
nK

¼ nK þ 1

2

� �

�hoK : ð10:19Þ

Collectively, however, the oscillators function as an elastic wave whose amp-

litude increases when all of these individual harmonic oscillators are simultan-

eously excited to a higher energy level.

  

mode K2

K1K2

mode K1

hwK
1

hωK
2

  hwK

mode K

n = 0

n = 2

n = 3

n = 4

n = 1

(a) (b)

n = 5

Figure 10.5 (a) Energy levels of a quantum mechanical harmonic oscillator. The oscillator frequency is

determined from the dispersion relation (Eq. (10.9)) for the corresponding wave vector, K. (b) Any

elastic wave in a crystal can be decomposed into N3 particles, vibrating (synchronously) in the

manner of a combination of quantized harmonic oscillators, one for each allowed wave vector

(i.e. mode). The figure illustrates how an elastic wave, formed by the superpositioning of two

modes, is formed by the combined excitation of two corresponding harmonic oscillators.
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Now let us suppose that waves are present in the crystal at several allowed

wave vectors. This is possible because waves superpose – multiple waves can

occupy the same medium at the same time. As an illustration, Fig. 10.5b shows

what two modes of very different K might look like when both are present.

Individually, each particle contains a contribution to its total displacement due

to these two modes, oscillates with each of two harmonic frequencies, and its

energy is described by the tally of the energy levels of each component (see

Fig. 10.5b),

ETotal ¼
X

K

EðKÞ
nK

¼
X

K

nK þ 1

2

� �

�hoK : ð10:20Þ

Furthermore, any transition between energy levels (DnK) results in a change in

the amplitude of the waves corresponding to that given mode.

It is customary, then, to dispense with the notion that a solid is just a

collection of individual vibrating atoms and to replace this with the concept

of the solid as a box containing very many quantized, propagating elastic

waves. Each such elastic wave of a given K is then the result of nK units of a

fundamental quantum, known as a phonon, that has both energy,

E ¼ �hoK ; ð10:21Þ

and momentum,

~p ¼ h

l
¼ �h~K: ð10:22Þ

The phonon acts as a boson particle (like the photon) and thus several phonons

can simultaneously occupy the same quantum state. In this way the limited set

of allowed macroscopic waves in the crystal can be viewed as a constructive

superposition of very many identical phonons. The implications of this phonon

picture will become more apparent when we examine their roles in various

scattering processes, in a later section.

Magnons: magnetic spin waves

This is a good spot to discuss a related type of wave-like excitation that

appears in ferromagnetic materials, known as a spin wave. Recall from

Chapter 4, that in a ferromagnetic material the magnetic moments (i.e.

spins) are aligned in a common direction: the direction of the net magnet-

ization. This alignment is a consequence of the exchange interaction (see

Eq. (4.27),

uðrijÞ ¼ �2JexðrijÞ~Si �~Sj;

acting between neighboring spins, which results in a lowering of the energy

when spins are aligned.
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The state in which all the spins are aligned is then the lowest energy state

(ground state) for the system of spins. But, small disturbances of the spin

orientation can develop in the form of propagating waves. As illustrated in

Fig. 10.6a, each spin of the wave precesses about the magnetization direction

at a common frequency o, but with a slightly different phase, f, so as to

achieve the appearance of a wave. These spin waves are similar to phonons in

that both represent small displacements from equilibrium that are countered by

a restoring force. Like phonons, spin waves are also quantized and the

quantum of a spin wave is known as a magnon.

However, there are important differences. Because the interactions that

produce restoring forces are different in each situation, the dispersion relation

of a spin wave is quite unlike that for phonons. To obtain this dispersion

relation, we approach the problem much as we did before for elastic waves, by

considering just a single jth spin. Here we consider how the energy of the spin

is altered from its ground state energy when it is oriented by a small angle f

relative to its neighbors, as illustrated in Fig. 10.6b. In the ground state

configuration, this single spin experiences energy,

Eo
j ¼ �2JexS

2 � 2JexS
2 ¼ �4JexS

2;

due to interactions with each of two neighboring spins. In the disturbed case,

the energy increases (becomes less negative) to

Ej ¼ �2JexS
2 cosf� 2JexS

2 cosf ¼ �4JexS
2 cosf:

Thus the energy increases by an amount,

DE ¼ Ej � Eo
j ¼ �ho ¼ 4JexS

2ð1� cosfÞ ¼ 8JexS
2sin2ðf=2Þ;

and the dispersion relation is

o ¼ 8JexS
2

�h
sin2ðKd=2Þ: ð10:23Þ

(b)

(a)

Fig. 10.6 (a) A chain of magnetic spins in the ground state as viewed from above (looking down on the

arrowheads). (b) In a spin wave, spins precess about the ground state orientation at a

common rate, o, but with a small difference in phase.
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Here we see that long wavelength spin waves exhibit a quadratic dependence

on K that is much unlike that of acoustic phonons.

10.2 Diatomic basis

We now consider a crystal with a basis containing two dissimilar atoms, one

with a small mass m and the other with a larger mass M. Why? Because this

two-basis situation is present in many ionic crystals (e.g. NaCl, CsCl) and,

as we will see, gives rise to an additional band of phonons that are not

present in the monatomic case. Again, we treat the simple cubic lattice and

will assume that propagation is along one of the lattice directions for which

alternating planes contain either one atom or the other (but not both). Such

would be the case of the [100] planes in the BCC structure of CsCl, or the

[111] planes of the FCC structure of NaCl. Furthermore, we assume all the

spring constants are equivalent between the planes. This is justified for an

ionic crystal, as each ion has an equivalent valence and interacts via a

Coulomb force that depends only on the charge. A series of planes is

illustrated in Fig. 10.7 in which various displacements of the atoms are

indicated.

As before, we seek an equation of motion for each plane of atoms. We begin

with the smaller atoms of mass m present in the jth plane, which undergo a

displacement ajðtÞ. The net force on this plane due to the plane behind and the

plane in front is

Fm
j ¼ �C1 aj � bj

� �

þ C1 bjþ1 � aj
� �

¼ C1 bjþ1 þ bj � 2aj
� �

¼ m
d2aj

dt2
:

ð10:24Þ

aj+1a
j

a
j–1

b
j–1

bj+1

d

C1

b
j

M
m

d1 d2

Figure 10.7 Elastic model of a one-dimensional diatomic crystal, consisting of particles of small mass m and

large mass M separated by springs of spring constant C1.
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Similarly, the net force on the jth plane containing larger atoms of mass M is

FM
j ¼ �C1 bj � aj�1

� �

þ C1 aj � bj
� �

¼ C1 aj þ aj�1 � 2bj
� �

¼ M
d2bj

dt2
;

ð10:25Þ

where bjðtÞ is the displacement of this plane of larger atoms from equilibrium.

Equations (10.24) and (10.25) represent two simultaneous equations of

motion for the two planes. We again assume plane wave solutions,

ajðtÞ ¼ AeiðKjd�otÞ

bjðtÞ ¼ BeiðKjd�otÞ

aj�1ðtÞ ¼ AeiðKðj�1Þd�otÞ ¼ ajðtÞe�iKd

bj�1ðtÞ ¼ BeiðKðj�1Þd�otÞ ¼ bjðtÞe�iKd ;

ð10:26Þ

and after inserting these solutions, our two equations of motion become,

B C1 1þ eþiKd
� �� �

¼ A 2C1 � mo2
� �

A C1 1þ e�iKd
� �� �

¼ B 2C1 �Mo2
� �

:
ð10:27Þ

Substituting one into the other produces our desired dispersion relation,

C1
2 1þ e�iKd
� �

1þ eþiKd
� �

¼ 2C1 � mo2
� �

2C1 �Mo2
� �

; ð10:28Þ

which can be arranged as a quadratic equation for o2 as,

o4 � 2C1ðmþMÞ
mM

o2 þ 2C1
2

mM
1� cosKdð Þ ¼ 0: ð10:29Þ

The solutions are then,

o2 ¼ C1ðmþMÞ
mM

� C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmþMÞ2
m2M 2

� 2 1� cosKdð Þ
mM

s

: ð10:30Þ

There are two solutions, one for each choice of the sign in the second term in

Eq. (10.30), which gives rise to two separate branches in the dispersion curve, as

illustrated in Fig. 10.8. To investigate the similarities and differences between

the waves that are present in each branch, let us examine their behavior in both

the low K (long wavelength) and K � � p=d (near the Brillouin zone) limits.

10.2.1 Long wavelength limit

As K approaches zero, we can expand the cosine in Eq. (10.30) to obtain,

lim
K!0

o2 ¼ C1ðmþMÞ
mM

� C1ðmþMÞ
mM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� mM

ðmþMÞ2
K2d2

s

: ð10:31Þ
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This can be further approximated by a binomial expansion of the square root,

such that

lim
K!0

o2 ¼ C1ðmþMÞ
mM

1� 1� mM

ðmþMÞ2
K2d2

2

 !( )

: ð10:32Þ

For the solution using the minus sign, we find a modified version of the

acoustical modes seen in the monatomic case (see Eq. (10.10)),

lim
K!0

olower ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C1d=2

ðmþMÞ=d

s

K ¼ uoK; ð10:33Þ

wherein the tension and mass per length are modified accordingly for the

present diatomic basis set. In addition, we can examine the ratio of the

amplitude of two adjacent masses, A/B, as given by Eq. (10.27). For these

long wavelength acoustical waves, the ratio is approximately unity and indi-

cates that both masses (large and small) move together in forming the wave, as

illustrated in Fig. 10.8a.

Now let us examine the other branch associated with the positive sign in

Eq. (10.32). In the long wavelength limit, this branch approaches a constant

(non-zero) value,

lim
K!0

o2
upper ¼

2C1ðmþMÞ
mM

¼ 2C1

meffective
; ð10:34Þ
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Figure 10.8 Dispersion curve for the one-dimensional diatomic crystal showing the lower frequency acoustical

branch, higher frequency optical branch and the energy gap between. The right-hand figures

illustrate relative particle displacements for waves at the Brillouin zone (b and c) and in

the long wavelength limit (a and d).
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and the amplitude ratio between the amplitude of the small mass (A) and the

large mass (B) is

A=B ¼ �M=m: ð10:35Þ

The negative value of the amplitude ratio implies that adjacent masses move

exactly out of phase. Furthermore, the amplitudes of the oscillations of each

mass are in proportion to the inverse of their mass: the small masses execute

larger displacements that are out of phase with the smaller-sized displacement

of the larger masses. The wave associated with this long wavelength limit of

the upper branch is illustrated in Fig. 10.8d.

10.2.2 Waves near the Brillouin zone

Consider now the form of the dispersion relation (Eq. (10.30)) as K approaches

values of either � p=d. In this limit, the cosine term becomes �1, and the

expression can be quickly reduced to,

lim
Kd!�p

o2 ¼ C1ðmþMÞ
mM

� C1

mM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðmþMÞ2 � 4mM

q

; ð10:36Þ

which has two independent solutions:

lim
Kd!�p

o2 ¼ C1

mM
ðmþMÞ � ðM � mÞf g ¼ 2C1=m; upper branch

2C1=M ; lower branch:

�

ð10:37Þ

Because the two masses are dissimilar, one solution occurs at a higher fre-

quency than the other and hence marks the termination of the upper branch,

while the other marks the termination of the lower branch in Fig. 10.8.

A consideration of the amplitude ratio in this limit leads to:

A

B
¼ 1; upper branch

0; lower branch:

�

ð10:38Þ

This means that for the upper branch, the wave consists of small masses

undergoing oscillations, while the large masses remain stationary. For the

lower branch, the wave appears just the reverse with the large masses oscillat-

ing and the small masses at rest (see Fig. 10.8b). Again, both waveforms

correspond to standing waves, and one can show (Ex. 2) that the group

velocity in each instance vanishes on approach to the Brillouin zone.

10.2.3 Acoustical waves, optical waves and energy gaps

Because the lower branch incorporates at long wavelengths the same sort of

acoustical modes found in the monatomic case, this lower branch is commonly

referred to as the acoustical branch. The upper branch is known as the optical
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branch. This latter description arises from the nature of the oscillations

depicted in Fig. 10.8d, in which the two masses move in opposite directions.

How would such a wave be excited in the first place? Well, if the crystal is

indeed an ionic crystal, as we suggested at the start, then an electromagnetic

wave (i.e. a photon) present in the crystal would produce the oppositely

directed forces on each anion and cation needed to generate these sorts of

optical phonon waves.

Note also the existence of a range of frequencies between the two frequencies

in Eq. (10.36) at which no waves can exist. This frequency gap implies a

corresponding energy gap for phonon energies in the crystal. Just at the Brillouin

zone we find two standing waves (constructed from phonons) of equivalent K

that are degenerate in their energies. This is foreshadowing. We will see other

examples of such degeneracies and energy gaps occurring in regard to the

Brillouin zone when we examine the nature of electron waves in later chapters.

10.3 Scattering from phonons

In the crystal, particles reside mainly in fixed locations associated with an

ordered lattice, but undergo small displacements from these fixed locations due

to their vibrational motion. Because the displacements are small, the crystal

planes remain well defined and X-rays continue to produce diffraction peaks

consistent with the Bragg law. However, the small displacements do serve to

reduce the intensity of these peaks somewhat, as we will show below. More-

over, the scattering of neutrons from the crystal reveals mechanisms at work in

which incoming waves (recall from quantum mechanics that neutrons, like

other small particles, can be viewed as waves) are scattered as if they

exchanged energy and momentum by the creation or annihilation of phonons.

To see this, we start with the dynamic structure factor obtained by the time-

dependent generalization of the static structure factor (Eq. (5.20)):

Sðq; tÞ ¼ 1

N

X

i

X

j

e�i~q�ð~riðtÞ�~rjð0ÞÞ
* +

; ð10:39Þ

where the positions of the particles are described in reference to their displace-

ments (~aðtÞ) from the equilibrium lattice sites,

~riðtÞ ¼ ~T i þ~aiðtÞ
~rjð0Þ ¼ ~T j þ~ajð0Þ:

ð10:40Þ

Introducing Eq. (10.40) into Eq. (10.39), we obtain,

Sðq; tÞ ¼ 1

N

X

i

X

j

e�i~q� ~T i�~T jð Þ e�i~q�~aiðtÞeþi~q�~ajð0Þ
D E

: ð10:41Þ
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Because the displacements from equilibrium are small, it is appropriate to

expand the two exponentials and carry out their multiplication to second order

in the displacement~aðtÞ:

e�i~q�~aiðtÞeþi~q�~ajð0Þ
D E

� 1þ �i~q �~aiðtÞh i þ þi~q �~ajð0Þ
	 


þ ~q �~aiðtÞ½ � ~q �~ajð0Þ
� �	 


� 1

2
~q �~aiðtÞ½ �2
D E

� 1

2
~q �~ajð0Þ
� �2
D E

:

ð10:42Þ

The second and third terms on the right-hand side will vanish when the ensemble

averaging (denoted by the brackets � � �h i) is performed, because the displacements

~aðtÞ involve repeated oscillations (positive and negative) about an equilibrium

lattice site. Similarly, the last two terms on the right-hand side are equivalent, non-

vanishing, quantities that each represent an average of the square of the scattering

phase angle associated with the displacements. It is customary to define these as

1

2
~q �~aiðtÞ½ �2
D E

¼ 1

2
~q �~ajð0Þ
� �2
D E

	 W ; ð10:43Þ

and then Eq. (10.43), when contracted back into the form of an exponential,

becomes

e�i~q�~aiðtÞeþi~q�~ajð0Þ
D E

� 1þ ~q �~aiðtÞ½ � ~q �~ajð0Þ
� �	 


� 2W

� exp ~q �~aiðtÞ½ � ~q �~ajð0Þ
� �	 


� 2W
� �

:
ð10:44Þ

Inserting this result back into Eq. (10.40), we can express the dynamic

structure factor as

Sðq; tÞ ¼ e�2W

N

X

i

X

j

e�i~q� ~T i�~T jð Þ exp ~q �~aiðtÞ½ � ~q �~ajð0Þ
� �	 
� �

¼ e�2W

N

X

i

X

j

e�i~q� ~T i�~T jð ÞX
1

m¼0

1

m!
~q �~aiðtÞ½ � ~q �~ajð0Þ

� �	 
m
:

ð10:45Þ

10.3.1 Elastic (Bragg) scattering: the Debye–Waller factor

The dynamic structure factor contains contributions from terms of increasing

index m in Eq. (10.45). The leading term, m ¼ 0, is

Soðq; tÞ ¼
e�2W

N

X

i

X

j

e�i~q� ~T i�~T jð Þ ¼ e�2WSð~q ¼ ~GÞ; ð10:46Þ

and produces a contribution that is time independent and corresponds to the

elastic scattering from the crystal planes discussed in Chapter 6 (see Eq. (6.2)).

The only difference here is the reduction in the intensity of the Bragg peaks by

an exponential factor known as the Debye–Waller factor. Again, this factor
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(defined by Eq. (10.43)) arises from the absolute magnitude of the vibrational

displacements, which serve to blur the actual location of the scattering planes.

10.3.2 Inelastic scattering by single phonons

As was emphasized earlier, the displacement of any given particle is the result

of a distribution of phonons, of various allowed K, that are simultaneously

sharing the crystal medium:

~aiðtÞ ¼
X

K

~AK exp
h

i ~K �~T i � oK t
� �

i

¼
X

K

h

ffiffiffiffiffiffi

nK
p

~aK

i

exp
h

i ~K �~T i � oK t
� �

i

~ajð0Þ ¼
X

K 0

~AK 0 exp
h

i ~K 0 �~T j

� �

i

¼
X

K0

h

ffiffiffiffiffiffi

nK0
p

~aK 0

i

exp
h

i ~K 0 �~T j

� �

i :

ð10:47Þ

Here, the amplitude (~AK) of the macroscopic wave associated with a given

mode K is the result of nK phonons, each described by a quantum mechanical

wave function of amplitude ~aK . The square root term appears in Eq. (10.47)

because it is the square of this quantum mechanical wave function that is

proportional to the number of phonons nK. The direction of the vector ~aK
denotes the polarization (longitudinal or transverse) and is parallel with ~K only

for longitudinal waves.

The next leading term in Eq. (10.45) describes the time-dependent modula-

tion of the scattering that results from the creation or annihilation of a phonon.

When the expressions for the displacements (Eq. (10.47)) are introduced, this

term appears as

X

K

ffiffiffiffiffiffi

nK
p

fqK

h i

exp
h

i ~K �~T i � oK t
� �

i

X

K0

ffiffiffiffiffiffi

nK 0
p

fqK 0

h i

exp
h

i ~K 0 �~T j

� �

i

* +

;

ð10:48Þ

where a polarization angle, fqK ¼~q �~aK , has been introduced. If the orders of

the summations are redistributed, Eq. (10.45) for m = 1 then reads as

S1ðq; tÞ ¼
e�2W

N

X

K

ffiffiffiffiffiffi

nK
p

fqK e�ioK t
X

K 0

ffiffiffiffiffiffi

nK0
p

fqK 0

X

i; j

ei
~K�~qð Þ�~T i½ �ei ~K 0þ~qð Þ�~T j½ �

* +

:

ð10:49Þ

The last double summation is significant. A similar summation appears in

Eq. (10.46). There, sharp maxima (i.e. the Bragg reflections) result only for

~q ¼ ~Ghkl. Here, these same maxima will only result when

K ¼ K 0

~q ¼ ~Gi þ ~K

~q ¼ ~Gj � ~K;

ð10:50Þ
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and the double summation will then return the value,

X

i; j

ei
~K�~qð Þ�~T i½ �ei ~K 0 þ ~qð Þ�~T j½ � ¼ N2: ð10:51Þ

This means that the dominant scattering contribution occurs when Bragg

scattered waves gain or lose momentum equivalent to that of one of the

allowed phonons. Thus in the scattering, a phonon is either created or annihi-

lated with its energy, and momentum traded with the scattering wave. In this

case, the spectrum of the scattered waves is shifted to produce a doublet for

each allowed K for which this phonon scattering can occur,

SG1 ð~K;oÞ ¼ Ne�2WnKf
2
qK

ðþ1

�1
e�ioK teiotdt

� �

¼ Ne�2WnKf
2
qKdðo� oKÞ:

ð10:52Þ
Neutrons are most commonly used to study this inelastic phonon scattering and

provide themost direct means of experimentally determining the dispersion curves.

However, visible light, which probes nearK¼ 0 also observes this interaction in the

acoustic branch, where oK � uK. In this case, the scattering process is identical

with the Brillouin scattering discussed in the previous chapter for liquids (with

Ghkl ¼ 0, and q ¼ �K). In the optical branch, the phonon interaction with visible

light is referred to as Raman scattering. There the q-dependence vanishes because

the group velocity of the optical branch vanishes as K ! 0 (see Fig. 10.8).

Summary

c Atoms of a crystal lattice vibrate in a concerted manner to produce a

discrete set of allowed vibrational modes of wave vector ~K.

c Vibrational energy is quantized into phonons with an energy �ho and

momentum �h~K. Any macroscopic elastic wave can be viewed as the

constructive superpositioning of multiple, identical phonons. The cre-

ation and annihilation of phonons results in inelastic scattering.

c The first Brillouin zone is defined by the Wigner–Seitz primitive cell in

reciprocal space. Only phonons described by ~K within the first Brillouin

zone are physically meaningful. Waves with ~ki that terminate on the

Brillouin zone boundary undergo multiple scattering (Bragg diffraction).

c Magnons are the magnetic corollary of the elastic phonon and consist

of quantized spin waves traveling in a ferromagnetic crystal.

c In scattering events, incoming waves can undergo inelastic scattering,

in which both energy and momentum are conserved by the creation or

annihilation of a phonon.
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Exercises

10.1. Estimate the size of the phonon energy gap in NaCl relative to the

energy of an acoustic phonon at the Brillouin zone.

10.2. From Eq. (10.30), demonstrate that the group velocity vanishes on

approach to theBrillouin zone for both the acoustical and optical branches.

10.3. Determine the group velocity of a spin wave (i.e. magnon) both in the

long wavelength limit and near the Brillouin zone.

10.4. In our development of the dispersion relation in Eq. (10.9) we assumed that

interactionsbetweenother thannearest neighbors couldbe ignored.Showthat

when the higher-order springs (Cj) acting between other than nearest neigh-

bors cannot be ignored, the dispersion relation in Eq. (10.9) is replaced by,

o2 ¼ 2

m

X

1

j¼1

Cj 1� cosð jKdÞð Þ:

10.5. 532 nm laser light is incident in a solid of refractive index 2.1, in which

the speed of sound is 5000 m/s. A small fraction of the incident photons

undergo Brillouin scattering such that they emerge at a scattering angle

2y ¼ 90� with slightly lower energy. (a) In what direction are the

phonons created in this process initially traveling? (b) What energy do

these phonons have? (c) By what fraction is the wavelength of the

scattered light increased relative to that of the incident light?

10.6. Real crystals are not constructed of ideal elastic springs for which the

potential varies as UðxÞ ¼ cx2. Rather, the potential includes also anhar-

monic contributions, UðxÞ ¼ cx2 � gx3 � fx4. We can estimate the ther-

mal expansion of a crystal by computing the thermal average equilibrium

separation using Boltzmann statistics as, xh i ¼
Ð1

�1
xe�UðxÞ=kBT dx

Ð1

�1
e�UðxÞ=kBT dx

. (a) Show

that for a crystal bound with ideal springs, there is no thermal expansion.

(b) Show that for an anharmonic interaction, the thermal expansion is

given approximately as xh i ¼ 3g

4c2
kBT . (Hint: expand the integrands for

small x as e�UðxÞ=kBT � e�cx2=kBT 1þ gx3=kBT þ fx4=kBTð Þ).

Suggested reading

A discussion of phonons in crystals can be found in most any standard Solid State

textbook. These are just a few personal favorites.

C. Kittel, Introduction to Solid State Physics, 8th Ed. (John Wiley and Sons, 2005).

J. S. Blakemore, Solid State Physics, 2nd Ed. (W. B. Saunders Co., Philadelphia, 1974).

N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston,

New York, 1976).

M.A. Omar, Elementary Solid State Physics (Addison Wesley, Reading, MA, 1975).
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11 Thermal properties

Introduction

In the previous chapter, we examined the elastic nature of a crystal and replaced
the notion of atoms as independent harmonic oscillators with the concept of
phonons as quantized pieces of elastic waves propagating within a crystal. In
this chapter we bolster our confidence in the reality of these phonons by
examining two thermal properties of a crystal: its specific heat and its thermal
conductivity. At low temperatures, the specific heat of a crystal decreases as the
cube of the temperature. A model (attributed to Einstein) based only on inde-
pendent harmonic oscillators is unable to account for this particular low tem-
perature dependence, while the Debye model, involving a population of
phonons, properly accounts for the temperature dependence. Likewise, the
thermal conductivity of a crystal can only be understood using the phonon
picture. The thermal conductivity exhibits a sharp division in its temperature
dependence between a T3 variation at low temperatures and a 1/T dependence at
high temperatures. This division stems from the nature of phonon–phonon
collisions, which are only truly successful in retarding heat flow at high tem-
peratures where so-called Umklapp processes dominate. In these collisions, the
resultant phonon emerging from the collision extends beyond the boundaries of
the Brillouin zone and suffers strong Bragg scattering by the lattice.

11.1 Specific heat of solids

Consider a crystal maintained at some finite temperature. Clearly the crystal
contains energy in the form of lattice vibrations for which we have now
developed two, self-consistent pictures. In one picture, we view this energy
as stored in atoms that act as local harmonic oscillators. In the other picture, the
energy is stored in a large population of phonons. The phonons appear in a
variety of energies consistent with both the dispersion relation and the
restricted set of allowed wave vectors imposed by the finite size of the crystal
and the boundary of the first Brillouin zone.

Regardless of the picture, thermal equilibrium of the crystal is maintained by
a steady inflow and outflow of energy with the surrounding thermal bath and
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the crystal assumes some well-defined internal energy, U, as a result. To
increase the temperature of the crystal requires the net inflow of additional
heat by an amount dQ ¼ CdT , where C is the specific heat. From the first law
of thermodynamics, dU ¼ dQ� PdV , we find

C ¼
dQ

dT
¼

@U

@T
þ P

@V

@T
¼ CV þ P

@V

@T
;

where,

CV 	
@U

@T

�

�

�

�

V

ð11:1Þ

is the specific heat at constant volume. Solids exhibit only very minor expan-
sion with temperature and so the specific heat at constant pressure, CP, is
essentially equivalent to CV. Nevertheless, in the following, we will focus
specifically on CV as defined by Eq. (11.1).

Examples of the temperature dependence of CV are shown in Fig. 11.1, for
typical monatomic crystals. At high temperatures, CV is seen to approach a
temperature-independent limit of 3R per mole, where R ¼ 8.314 J/K is the gas
constant (R ¼ NAkB). This high temperature limit is in agreement with classical
Dulong–Petit theory, based upon the equipartition theorem, which posits that
there should be ½ kBT of internal energy for each degree of freedom. Since the
oscillating atoms in the crystal are constantly shifting energy between potential
and kinetic forms, there are in fact, a total of six degrees of freedom per atom
for a 3D crystal and hence an internal energy U ¼ 3RT per mole.
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Figure 11.1 Specific heat (per mole) for four crystals as a function of temperature. Each shows T 3 behavior at low

temperatures and an approach at high temperatures to the Dulong–Petit law predicted by the

classical equipartition theorem. (Data from Thermophysical Properties of Matter (1970).)
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However, this classical result is severely violated at low temperatures, as
seen in Fig. 11.1, where the CV (T) curve vanishes like T3 as absolute zero is
approached. Such breakdowns of classical thermodynamics are not uncommon
and are often a signature of the growing importance of quantization effects.
This is true for the present situation, and we will see that a correct description
of the CV of the crystal will require a quantum mechanical approach.

In the following, we examine two practical models for the CV of crystals that
take into account the quantization of elastic energy. The first, which is not
completely successful in accounting for the behavior in Fig. 11.1, is the Einstein
model. In this approach, the elastic energy is simply partitioned intoN3 identical

quantum mechanical harmonic oscillators (one for each particle of the crystal)
that oscillate with a common frequency, but independently of one another. In
this model, illustrated in Fig. 11.2a, the crystal structure plays no role, as the
oscillators are not connected in any manner to each other. The second model we
will examine is the Debye model. In the Debye model (Fig. 11.2b), the oscilla-
tions are not treated as independent of each other, but rather the quantization is
introduced in the form of limits on the allowed wavelengths of the propagating
phonons that travel within the lattice. As it turns out, this second approach is far
more successful in accounting for the CV curves shown in Fig. 11.1.

11.1.1 Einstein model

To obtain CV, we first need to develop a statement of the total internal energy of
N3 oscillators. Since the oscillators are treated independently in the Einstein

N x

+ + ...+

Einstein 

model

Debye 

model

(b)

(a)

Figure 11.2 The fundamental difference between the Einstein and Debye models for the specific heat is

illustrated. (a) In the Einstein approach, the vibrational energy of the crystal is uniformly distributed

into N3 equivalent harmonic oscillators whose vibrational frequency is treated as a fitting parameter.

(b) In the Debye approach, the vibrational energy is distributed among all the allowed vibrational

modes, each with a frequency approximated by oK � uoK .
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model, it suffices to determine the average thermal energy of a single oscillator
and then multiply by N3. The energy levels of a 1D quantum mechanical
harmonic oscillator are given as,

En ¼ nþ
1

2

� �

�ho: ð11:2Þ

From statistical mechanics, the average energy of such an oscillator is given
by,

Eh i¼

P

1

0
En exp �En=kBTð Þ

P

1

0
exp �En=kBTð Þ

¼
�ho

2
þ

P

1

0
n�ho½ � exp � n�ho½ �=kBTð Þ

P

1

0
exp � n�ho½ �=kBTð Þ

¼
�ho

2
þ �ho

P

1

0
nxn

P

1

0
xn

;

ð11:3Þ

where x ¼ expð��ho=kBTÞ. The two summations are known, so,

Eh i¼
�ho

2
þ �ho

x=ð1� xÞ2

1=ð1� xÞ
¼

�ho

2
þ �ho

1

x
� 1

� ��1

¼
�ho

2
þ �ho nh i; ð11:4Þ

where,

nh i¼
1

expð�ho=kBTÞ � 1

� �

ð11:5Þ

is known as the Planck distribution function and equals the average energy
level of a harmonic oscillator at temperature T.

For a crystal with a mole of three-dimensional oscillators, the total energy
would then be

U ¼ 3NA Eh i¼ 3NA

�ho

2
þ �ho

1

expð�ho=kBTÞ � 1


 �� �

; ð11:6Þ

and the specific heat (per mole) is given by,

CV ¼
@U

@T
¼ 3NAk

�ho

kBT

� �2 e�ho=kBT

e�ho=kBT � 1ð Þ
2 ¼ 3R

y2ey

ey � 1ð Þ2
; ð11:7Þ

where y ¼ �ho=kBT . This equation is a bit awkward, so let us just consider the
two limits of high and low temperatures. At high temperatures, y approaches
zero and we can expand the exponential terms to obtain,

CV ¼ 3R
y2 1þ yþ � � �ð Þ

1þ yþ � � �ð Þ � 1ð Þ2
� 3R: ð11:8Þ

So far, so good. This result agrees with the classical Dulong–Petit result.
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At low temperatures, y approaches infinity, and we can rearrange Eq. (11.7)
such that in this limit,

CV ¼ 3R
y2e�y

1� e�yð Þ2
� 3Ry2e�y ¼ 3R

�ho

kBT

� �2

e��ho=kBT : ð11:9Þ

We see that the Einstein model does produce a CV that vanishes as absolute
zero is approached, but which does not quite accommodate the actual T3

behavior seen in experiments.

11.1.2 Debye model

The basic problem with the Einstein model is that it treats the particles as
though they all oscillate identically and independent of one another. In reality,
these particles are interconnected by bonds, and as we saw earlier, their
oscillations are not independent but give rise to elastic waves (phonons) that
propagate through the crystal. Like the independent oscillators, these phonons
have energies that are also quantized (see Eq. 10.19), but the quantization
arises from constraints on the allowed wavelengths that the phonons can have,
as given by Eq. (10.18). Together with the dispersion relation, these constraints
lead to a collection of oscillators that now have some distribution of frequen-
cies as opposed to a common frequency of oscillation.

Since the energy is now distributed in the phonons and not in the individual
oscillations of the particles, our internal energy is a sum of all the energies of
all the phonons that are present at thermal equilibrium,

U ¼
X

phonons

ðphonon energyÞ � ð# phonons of that energyÞ: ð11:10Þ

Moreover, these phonons are distributed into discrete modes, each represented
by a “dot” in K-space, as illustrated in Fig. 11.3. These modes fill the K-space
uniformly out to the edge of the first Brillouin zone at K¼� p=d, where the
index in Eq. (10.18) is n ¼ N/2. Hence there are N modes in each
spatial direction and N3 total modes equal to the total number of particles in
an N � N � N crystal. Given this large number of closely spaced modes, it is
appropriate to convert the summation in Eq. (11.10) to an integration over a
continuous space of K,

U ¼

ð

modes

ð�hoKÞ�
1

expð�hoK=kBTÞ�1


 �

�
dN

dK

� �

dK: ð11:11Þ

Here, the first term is the energy of a given phonon, determined from the
dispersion relation based on its value of K. The second term is the Planck
distribution which provides the number of identical phonons present at equi-
librium for a given temperature. The last term, dN=dKð Þ ¼ gðKÞ, is known as
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the density of states. It represents the number of modes (dots in Fig. 11.3) that
are included between K and K þ dK. Since the dots are evenly spaced, and we
know that there are N3 total dots within the Brillouin zone, the density of
modes (dots) in this K-space is

rK ¼
N 3

2p=dð Þ3
¼

Ndð Þ3

2pð Þ3
¼

V

8p3
; ð11:12Þ

and the density of states is then

gðKÞ ¼
V

8p3
4pK2 ¼

VK2

2p2
: ð11:13Þ

The Debye approximation

To carry out the integration, we would now need to express oK in terms of
the integration variable K using the dispersion relation (Eq. (10.9)). This
would, however, produce an integrand containing an exponential of a sine
function which would be rather messy to deal with. Instead, we approach the
problem using the Debye approximation, in which the dispersion is approxi-
mated as

oK � uoK: ð11:14Þ

Obviously, the Debye approximation in Eq. (11.14) severely overestimates
the energy of a large fraction of the modes in the Brillouin zone, especially

Ky

Kx

Ky

Kx

dVK = 4πK 2dK

  

r 
K 

Brillouin zone

Figure 11.3 The allowed vibrational modes of a three-dimensional crystal (given by Eq. (10.18)) are

represented as evenly spaced dots in a three-dimensional K-space. Because there are as many

dots as there are particles and their spacing is small, we can treat the allowed modes as a

continuum described by a density of states, gðKÞ, such that the number of modes in the range

from K to K þ dK is given as gðKÞdK .
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those that have high frequencies near to the zone boundary. Why then might
we think that this approximation is suitable to the integration we are attempting
to complete? Although these high frequency modes have substantial energy
(contributing to the first term in the integrand of Eq. (11.11)), the actual
number of such phonons is sharply diminished by the Planck distribution
(the second factor in the integrand of Eq. (11.11)), particularly at low tempera-
tures. Thus, although the integral extends over all modes in the Brillouin zone,
many of these modes will not be populated at low temperatures and so the
approximation should remain valid in that limit.

Returning to our integral of Eq. (11.11), we now face a predicament. Our
integration volume consists of spherical shells in K-space that are inconsistent
with the cubic boundary formed by the Brillouin zone. Thus the upper limit of
integration is not well determined. However, in the spirit of approximations,
we will keep the radial integration but make sure that we limit the radius to a
value Kmax such that only N3 dots of K-space have been counted. The
appropriate Kmax is then given by,

N3 ¼

ð

Kmax

K¼ 0

gðKÞdK ¼
VK3

max

6p2
; ð11:15Þ

or,

Kmax ¼ 6p2N3=V
� �1=3

¼ 6p2n
� �1=3

: ð11:16Þ

With the Debye approximation, our complete integral is now

U ¼ 3

ð

Kmax

K¼ 0

ð�huoKÞ
1

expð�huoK=kBTÞ�1


 �

gðKÞdK; ð11:17Þ

where the factor of three is introduced here to account for the three independ-
ent polarizations (two transverse and one longitudinal) that phonons can also
possess. The specific heat is then

CV ¼
@U

@T
¼

3V

2p2
ð�huoÞ

ð

Kmax

K¼ 0

K3dK
d

dy

1

ey�1


 �

dy

dT
; ð11:18Þ

where y ¼ �huoK=kBT . After carrying out the differentials, one finds,

CV ¼
3V

2p2
ð�huoÞ

kBT

�huo

� �4 1

T

ð

ymax

y¼ 0

y4ey

ey�1ð Þ2
dy; ð11:19Þ

where ymax ¼ �huoKmax=kBT . Substituting Eq. (11.16), this can be rearranged to
read,
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CV ¼ 9N3k
kBT

�huoKmax

� �3 ð

ymax

y¼ 0

y4ey

ey�1ð Þ2
dy ¼ 9N3kB

T

yD

� �3 ð

ymax

y¼ 0

y4ey

ey�1ð Þ2
dy;

ð11:20Þ

where

yD ¼ �huoKmax=kB ð11:21Þ

is known as the Debye temperature.
This looks very promising since the factor in front of the integral now has

the appropriate T3 behavior we had hoped to find. To check its performance,
we again examine the two temperature limits. At high temperatures, y

approaches zero and we can again expand the exponentials,

CV � 9N3kB
T

yD

� �3 ð

ymax

y¼0

y4ð1þ yþ � � �Þ

ð1þ yþ � � �Þ�1ð Þ2
dy � 9N 3kB

T

yD

� �3 ð

ymax

y¼0

y2dy

¼ 9N3kB
T

yD

� �3 1

3

yD

T

� �3

¼ 3R;

ð11:22Þ

to again obtain the Dulong–Petit law, observed at high temperatures. Now in
the low temperature limit, ymax approaches infinity, so we will set the upper
limit of integration in Eq. (11.20) to produce a known definite integral,

CV � 9N3kB
T

yD

� �3 ð

1

y¼0

y4ey

ey�1ð Þ2
dy ¼ 9N3kB

T

yD

� �3 12p4

45
; ð11:23Þ

which produces the correct T3 dependence seen experimentally.

11.2 Thermal conductivity

The thermal conductivity, kth, is defined in reference to the steady state rate at
which heat travels through a solid from a region of high temperature to low
temperature. As illustrated in Fig. 11.4, two ends of a long bar are maintained
at different temperatures. Macroscopically, the bar has a cross-sectional area A,
and the heat flux, jQ, is given as,

jQ ¼
dðQ=AÞ

dt
¼ �kth

dT

dx
: ð11:24Þ

Microscopically, heat flow is a diffusive process. Heat in the solid is carried by
small bundles of propagating energy (i.e. phonons) that undergo numerous
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collisions with one another and with imperfections in the crystal lattice. These
microscopic collisions serve to retard the flow of heat and appear as a macro-
scopic thermal resistance, k�1

th . A key measure of the retardation is the mean
collision time, tcoll, or the mean free path, lmfp ¼ utcoll, where u is the average
speed of the carrier. The mean free path is a measure of the average distance an
energy carrier travels before suffering a collision.

With this picture of heat transport, simple arguments from kinetic theory can
be used to evaluate the thermal conductivity. Consider, as shown in Fig. 11.4,
the microscopic transport of a single heat carrier that travels a distance lx from a
region of high temperature to lower temperature before encountering a collision.
During the trip, an amount of heat, Q ¼ cDT , is released by the carrier, where c
is the specific heat of a single carrier. The rate of thermal flux is then,

jQ ¼
�cDT

At
¼

�cDTux

Alx
¼ CuxDT ; ð11:25Þ

where C is the (macroscopic) specific heat per volume. Since DT is given by
the temperature gradient, we find,

jQ ¼ Cuxlx
dT

dx
¼ �Cu2xtcoll

dT

dx
¼ �C

u2

3
tcoll

dT

dx
¼ �

C

3
ulmfp

dT

dx
; ð11:26Þ
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Figure 11.4 A temperature differential is applied to a long block of material with cross-sectional area A causing

heat to flow from the hot end (T1) to the cold end (T2). Microscopically, the energy is transported by

phonons that undergo frequent collisions with imperfections of the crystal lattice and with other

phonons. In one instance, shown in the lower figure, a “hot” phonon created at point a is

thermalized by numerous collisions as it travels and arrives at point b as a “cooler” phonon. During

the journey, a small quantity of heat, Q, is released.
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so that the thermal conductivity is given as,

kth ¼
1

3
Culmfp: ð11:27Þ

11.2.1 Phonon collisions

The thermal conductivity is mainly controlled by the size of the mean free
path, which is in turn sensitive to several sources of collisions. An ultimate
limit to the mean free path is the physical boundary of the crystal. However,
imperfections in the crystal lattice are typically present at much shorter
distances. Beyond the nature of the lattice itself, collisions between phonons
provide an important source for thermal resistance and among such colli-
sions there are two significant processes: normal (or N-processes) and
Umklapp (or U-processes). Each of these is illustrated in Fig. 11.5. In the
normal process, two phonons collide to produce a third whose wave vector
resides within the Brillouin zone. In the process, momentum is conserved
and so

~K1 þ ~K2 ¼ ~K3 ðN -processÞ: ð11:28Þ

The N-process, however, does not lead to a retardation of heat flow, since
whatever forward momentum was present before the collision still remains. To
see how retardation arises, we must consider the so-called Umklapp process in
which two phonons collide to produce a third that lies outside the Brillouin
zone. As we have discussed earlier, phonons described by wave vectors
outside the Brillouin zone are not physically realistic elastic waves, because
they imply a wavelength shorter than twice the particle spacing. Such phonons
are instead represented by an equivalent wave vector, residing inside the
Brillouin zone, which is obtained by adding an appropriate reciprocal lattice
vector:

~K1 þ ~K2 þ ~G ¼ ~K3 ðU -processÞ: ð11:29Þ

To see how this occurs, you may need to treat the collision product that
extends past the Brillouin zone as a sum of two vectors: one that ends at the
zone boundary and a snippet continuing outside the zone. As we know, the
first part is Bragg reflected to the opposite side of the Brillouin zone and,
when the snippet is added, the resulting wave vector appears inside the
zone, as given by Eq. (11.29). Momentum conservation is maintained
during the process as some momentum is transferred to the lattice itself
via the Bragg reflection. The significance of the U-process is quite obvious
as it leads to a reversal of the heat transport and considerable contribution to
thermal resistance.

K1

K3K2

N-process
(a)

G 

K3

K2

K1

U-process
(b)

Figure 11.5

Phonon–phonon scattering

processes. (a) In the normal

process, two low energy phonons

undergo a collision. Each phonon is

annihilated with the total energy

and momentum appearing in the

form of a new phonon (~K3) that

still resides within the Brillouin

zone. This process does not lead to

retardation of heat transfer since

the forward momentum is

unchanged. (b) In the Umklapp

process, two (high energy)

phonons collide to produce what

would be a phonon outside the

Brillouin zone (dashed arrow). In

reality, the new phonon resides

inside the Brillouin zone and the

missing momentum is distributed

to the crystal lattice as a whole.

This process leads to a reduction of

the phonon momentum and a

retardation of heat transfer.
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With this background, we can now understand the temperature variations of
kth commonly seen in crystals and illustrated in Fig. 11.6. At high tempera-
tures, kth varies inversely with temperature. In this high temperature regime,
average phonon energies are large and most collisions result in U-processes.
The mean free path is then limited by the high density of phonons and is
proportional to the Planck distribution,

lmfp / nh i�1 ¼ lim
T!1

expð�ho=kBTÞ � 1ð Þ �
�ho

kBT
/ T�1: ð11:30Þ

Since at high temperatures the specific heat approaches the constant Dulong–
Petit value, the thermal conductivity, given by Eq. (11.27), thus falls off as T�1.

At low temperatures, average phonon energies are small and the
U-processes become ineffective as very few phonons possess sufficient
momentum to produce a collision product residing outside the Brillouin zone.
In this limit, the mean free path is a temperature-independent constant set only
by the distance between imperfections of the crystal, and so the temperature
dependence of kth in Eq. (11.27) arises from that of the specific heat, which
varies as T3 at low temperatures.
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Figure 11.6 (a) Plot of the specific heat (divided by T 3) of crystalline and amorphous SiO2. Although the crystal

approaches the Debye T 3 limit at low temperatures, the glass exhibits an anomalous behavior

consistent with the presence of an additional contribution which increases linearly with temperature.

(b) Plot of the thermal conductivity of crystalline and amorphous SiO2. For the crystal, kth
increases as T 3 at low temperatures, but decreases as T�1 at high temperatures. For the glass, kth
increases only as T2 at low temperatures and exhibits an anomalous plateau in the vicinity of 10 K.

(Adapted from Phillips (1987).)
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11.3 Amorphous materials

Disordered materials lack the regular particle positions found in crystals and so
irregularities appear in particle positions, as illustrated in Fig. 11.7, that are
comprised of intermittent crowding and voids. This has two important conse-
quences for phonons. Firstly, because of the density variations in the amorph-
ous solid, atoms or groups of atoms in a glass can undergo small, local
rearrangements following a small energy exchange. These transitions between
two (or more) local arrangements can be modeled by an equivalent two-level
system (TLS) in statistical mechanics and this opens up a novel mechanism for
energy exchange with phonons of a similar energy.

Secondly, disorder introduces a relevant length scale, x, which characterizes
the average distance between adjacent defects in the otherwise ordered struc-
ture. Long wavelength phonons, with l >> x, span over numerous defects
within a single wavelength and are largely unaffected by the disorder. These
phonons propagate through the solid like ordinary, extended waves. However,
as the phonon wavelength shrinks towards x, the phonons become increasingly
sensitive to the disorder and undergo significant scattering. In this case, the
phonon can be thought of as being multiply reflected between adjacent defects,
so as to become trapped in the form of a non-propagating, localized phonon.

Because many of the thermal properties in a solid are dominated by the large
supply of long wavelength phonons, the specific heat and thermal conductivity
of crystals and glasses are much alike at high temperatures. It is only at low

localized
phonon 

two-level
system 

Figure 11.7 Unlike crystals, disordered materials contain irregularities in particle positions that provide for

local relaxations between two (or more) configurations that can be modeled by a two-level system

(TLS). Although long wavelength phonons propagate in the form of extended phonons traveling

as in a crystal, short wavelength modes can become localized (non-propagating) when their

wavelength recedes below some characteristic scale, x, where continuum behavior vanishes.
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temperatures, below about 10 K, where disordered materials display anomal-
ies. These anomalies are illustrated in Fig. 11.6 for SiO2. They include a linear
contribution to the specific heat in addition to the Debye law, and a thermal
conductivity that increases as T2 for temperatures below 1 K and exhibits a
plateau for temperatures from 1 K to roughly 10 K.

11.3.1 Two-level systems

In a glass, we imagine that there exist a great many local regions whose particles
are able to undergo a slight rearrangement from one state (f1) to another (f2) of
different energy. We can model the underlying thermodynamics by a TLS, like
that shown in Fig. 11.8, in which the two states are separated by a barrier. In
principle, there are a variety of these TLSs in the glass with some distribution of
energy differences, but for the moment we consider just a single one. For
convenience we take the lower energy level to be zero, so that the average
energy of the TLS at equilibrium is given by Boltzmann statistics as,

Eh i¼

P

i¼1;2
Eie�Ei=kBT

P

i¼1;2
e�Ei=kBT

¼
E

eE=kBT þ 1
: ð11:31Þ

Specific heat

This single TLS then contributes to the specific heat by an amount

CðEÞ ¼
@ Eh i

@T
¼ kB

E

kBT

� �2 eE=kBT

eE=kBT þ 1ð Þ
2 ; ð11:32Þ

and the cumulative contribution of several such TLSs could then be described as,

C ¼

ð

CðEÞgTLSðEÞdE; ð11:33Þ

where gTLSðEÞdE is the density of states (i.e. the number of TLSs with energy
between E and E þ dE). Let us for the moment assume that there are roughly
equal numbers of TLSs of any given energy difference such that gTLSðEÞ ¼
constant¼ NTLS. In this simple case, the contribution to the specific heat by the
TLSs is given by,

C ¼ NTLSkB

ð

1

0

E

kBT

� �2 eE=kBTdE

eE=kBT þ 1ð Þ
2

¼ NTLSk
2
BT

ð

1

0

x2exdx

ex þ 1ð Þ2
¼

p2

6

� �

NTLSk
2
BT ;

ð11:34Þ

and reproduces precisely the linear contribution found experimentally.

E

(a)

(b)

f1

f2

Figure 11.8

The two-level system. (a) In a

disordered material there exist a

great many local regions that

can undergo some minor

rearrangement between two

configurational states that are

nearby in energy. (b) The

kinetics of these transitions can

be modeled using an

asymmetric double well

potential in which the two

configurations differ by an

energy E and are separated by a

barrier.
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Thermal conductivity

As we saw earlier, the main consideration for thermal conductivity is the mean
free path of the heat carrier. In crystals at low temperature, the mean free path
is limited only by the imperfections of the crystal lattice and so the thermal
conductivity increases as T3. In a glass, the mean free path is limited instead by
the density of the TLSs present. These TLSs act as phonon traps that can
capture an incoming phonon and later release it in a random direction, thus
retarding the flow of heat.

A given TLS of energy E can only trap phonons of that same energy.
Consequently, to determine the thermal conductivity we will need to integrate
over all the energies these TLS traps might have,

kth ¼
u

3

ð

oD

0

CðoÞlmfpðoÞdo; ð11:35Þ

where CðoÞ is the contribution to the phonon specific heat (per volume) made
by just a narrow band of phonons in the range between o and oþ do. One
can show (Ex. 5) that this contribution is given by

Cðo; TÞ ¼ 3kB
gðoÞ

V

� �

�ho=kBTð Þ2e�ho=kBT

e�ho=kBT � 1ð Þ
2 ; ð11:36Þ

where gðoÞ is the density of phonon states (in the Debye approximation) of
Eq. (11.13), only now expressed in terms of o.

So now, to obtain the thermal conductivity due to TLSs, we need to find the
correspondingmean free path or, optionally, the average collision time (or phonon
lifetime), tcoll, such that lmfp ¼ utcoll. Consider then, as illustrated in Fig. 11.9, the
three processes bywhich a TLSmight interactwith afield of phonons of energyE.
These include stimulated absorption, stimulated emission, and spontaneous emis-
sion, and are synonymous with the exchange processes found in a laser (Silfvast,
2004) wherein a field of photons exchanges energywith an active lasingmedium.
Spontaneous emission occurs when the TLS transitions from the high energy state
f2 to the lower energy state f1 to produce a new phonon. This process occurs
without the perturbing influence of other phonons present and takes place at a rate,
G
o
21, that is typically much slower than the other two processes. Stimulated

emission, like its spontaneous cousin, leads to the generation of a new phonon,
but occurs at a faster rate, G21, due to the presence of other phonons that serve to
“stimulate” the transition. In stimulated absorption, a TLS moves up in energy
from state f1 to f2 by the annihilation of an existing phonon at a rate, G12. As
implied by their name, the rates for both stimulated processes are proportional to
the density of phonons present that serve to provide the stimulation,

G12 ¼ B12nphðEÞ

G21 ¼ B21nphðEÞ;
ð11:37Þ
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and hence the change in the density of phonons with energy E is given by the
following rate equation,

dnphðEÞ

dt
¼ NTLS p2G

o
21 þ NTLSp2G21 � NTLS p1G12; ð11:38Þ

where p1, p2 are the equilibrium probabilities that a TLS is in state f1 or f2,
respectively. In equilibrium, the upward and downward stimulated transition rates
are equal (a condition known as detailed balance), and so B12 ¼ B21 ¼ B(E).
Furthermore, since both stimulated processes occur far more rapidly than the
spontaneous emission process, we ignore the latter and write,

dnphðEÞ

dt
� �NTLSBðEÞðp1 � p2ÞnphðEÞ: ð11:39Þ

The solution to this differential equation is an exponential decay with a phonon
lifetime (i.e. average collision time) given by,

t�1
ph � NTLSBðEÞðp1 � p2Þ: ð11:40Þ

The probability of a TLS being in its excited state is given by the corresponding
Boltzmann factor, p2 ¼ p1e�E=kBT , and, because p1 þ p2 ¼1, it follows that

ðp1 � p2Þ ¼
ð1� e�E=kBT Þ

ð1þ e�E=kBT Þ
¼ tanhðE=2kBTÞ; ð11:41Þ
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Figure 11.9 Illustration of the three processes by which a TLS can interact with a phonon field. Because

the two stimulated processes occur at higher rates than does spontaneous emission, they

contribute most in limiting the mean free path of phonons. At equilibrium, detailed balance requires

that the upward and downward transition rates (G12 and G21, respectively) be equal.
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so that

t�1
ph � NTLSBðEÞtanhðE=2kBTÞ: ð11:42Þ

What is B(E)? Defined in Eq. (11.37), we see that B(E) is a measure of the
likelihood that a phonon of energy E will trigger the transition of a two-level
system. Physically, the phonon does this by “rocking” the TLS as it passes by.
The phonon is an elastic wave and produces a local stress at the site of the TLS.
For low frequency acoustic phonons, this stress is nearly imperceptible. But, as
the wavelength of the phonon decreases, the local stress becomes more severe.
It reasons then that BðEÞ � A�ho, where A is some undetermined constant, and
increases with decreasing wavelength so that

l�1
ph ¼

1

u
t�1
ph ¼

NTLSA�ho

u

� �

tanhð�ho=2kBTÞ: ð11:43Þ

The thermal conductivity is then given from Eq. (11.35) as

kth ¼
k3BT

2

2p2�h3NTLSAu

ð

ymax�1

0

y3ey

ðe y � 1Þ2
cothðy=2Þdy �

k3B

2�h3NTLSAu

� �

T 2;

ð11:44Þ

and varies at low temperatures, as seen experimentally.

11.3.2 Phonon localization

As mentioned previously, disordering gives rise to a characteristic length
scale, x, that separates phonon behavior into two extremes. For phonon
modes with l >> x, the phonon appears as an “extended” elastic wave that
propagates in the glass much the same as it would in a crystalline solid. At
large wavelengths, both the crystal and disordered media appear as a
continuum solid. However, phonon modes with l < x sample a non-con-
tinuous medium, punctuated by irregularities in particle positions that
severely limit the establishment of a propagating elastic wave. The char-
acteristic length scale thus operates much like a mean free path, lmfp � x,
wherein the incipient phonon is multiply scattered to produce a non-
propagating, localized phonon. The crossover condition at which this
occurs,

l � x or Klmfp � 1; ð11:45Þ

is often referred to as the Ioffe–Regel criterion.
Phonon localization is particularly relevant in certain self-similar materials

such as aerogels and epoxy resins which possess a self-similar or fractal
structure at length scales smaller than the correlation length, x. In these
materials, the correlation length marks an interface between normal extended
phonon modes, as described by the Debye density of states gðoÞ � o2, and
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localized phonons, here referred to as fractons (Aharony et al. (1987)), that
exhibit a fractal density of states,

gðoÞ � ods�1; ð11:46Þ

where ds is the fracton or spectral dimension closely related to the fractal
dimension discussed in Chapter 8.

Although the effects of phonon localization in glasses possessing only short-
range order are not fully understood, there is compelling evidence that local-
ization does impact the thermal properties of glasses at low temperatures. For
example, studies suggest a strong connection between the high temperature
onset of the plateau in thermal conductivity discussed earlier and satisfaction
of the Ioffe–Regel condition by the average phonon wavelength. Studies of the
thermal conductivity of certain amorphous SiO2 aggregates, shown in
Fig. 11.10, indicate that the high temperature edge of the plateau shifts to
lower temperatures with increasing particle size, x. One can show (Ex. 6) that
the temperature at which this occurs corresponds to an average phonon
wavelength,

lh i¼ hu=2:70kBT ; ð11:47Þ
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Figure 11.10 Measurements of the thermal conductivity of amorphous silica for a bulk sample and two

samples formed by sintering of silica aggregates of differing cluster size, x. In each instance a

kink is located (arrows) where the conductivity plateau first emerges with decreasing temperature.

(Adapted from Graebner and Golding, 1986.)
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which is seen in Fig. 11.11, to exactly conform to the Ioffe–Regel criterion.
The inference drawn for bulk SiO2 suggests localization on a scale of x� 30Å.

Summary

c The specific heat of a solid results from a collection of phonons with a
distribution of allowed energies. The thermal population of any
given type of phonon is given by the Planck distribution,
nh i ¼ expð�ho=kBTÞ � 1f g�1.

c The Debye model for the specific heat approximates the phonon disper-
sion asoK ¼ uoK and is successful at accounting for the T3-dependence
of CV at low temperatures.

c Thermal resistance in solids arises from phonon collisions, either with
lattice imperfections, or with other phonons through the Umklapp
scattering process.

c Anomalies in the thermal properties of amorphous solids arise from the
presence of voids in the structure. These voids promote phonon local-

ization (i.e. non-propagating phonon modes) and are the source for two-
level system processes that couple with the phonon field.
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Figure 11.11 The average phonon wavelength, corresponding to the temperatures in Figure 11.10 where the kink

in the thermal conductivity occurs, are graphed against the aggregate cluster size. Data for crystalline

aggregates of alumina (which exhibits a discontinuity in kthðTÞ) are also included. Equivalence of

these two quantities (dashed line) indicates that the Ioffe–Regel criterion (Eq. (11.45)) is satisfied and

the onset of phonon localization has occurred. (Adapted from Graebner and Golding, 1986.)

199 Summary



Exercises

11.1. Determine the density of states, gðoÞ, for both a 1D and 2D lattice under
the Debye approximation.

11.2. Consider a 3D solid whose dispersion relation is given as in Eq. (10.9)
for all directions. (a) Assume that the propagation speeds of longitudinal
and transverse waves are identical and show in this instance that the

density of states with respect to frequency is gðoÞ ¼
6 sin�1ðo=omaxÞ½ �

2

p2d2uo 1�ðo=omaxÞ
2½ �

1=2 ,

where omax ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi

C1=m
p

. (b) Show also that g(o) is proportional to o2 at

low frequencies in the Debye limit
11.3. Apply the Debye approximation to a 1D monatomic crystal lattice with

atomic spacing d, and speed of sound uo. (a) Show that the Debye

temperature is yD ¼
huo

2kBd
. (b) Derive integral expressions for the lattice

energy and specific heat, and (c) show that CV ¼
p
2kBT

3dyD
per unit length at

low temperatures, while CV exhibits the Dulong–Petit value at high
temperatures.

11.4. Consider the contribution to specific heat due to spin waves (i.e.
magnons) present in a ferromagnetic crystal. Show that this contribution
vanishes at low temperatures as T3/2.

11.5. Show that the contribution to the Debye specific heat per volume due to
phonons with frequencies in the range from o to oþ do is given as in
Eq. (11.36).

11.6. Show that the average phonon wavelength (thermally averaged) for the
Debye model is given by Eq. (11.47).

Suggested reading

Much about the thermal properties of crystals is covered in standard Solid State

textbooks, such as those listed below. A nice review of two-level systems can be found

in the article by Phillips. The last three articles listed pertain to phonon localization in

amorphous and fractal matter.
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12 Electrons: the free electron model

Introduction

In the last two chapters we explored the behavior of phonons in a crystal.
There we saw how these discrete, quantized pieces of propagating energy
contributed to both the specific heat and thermal conductivity of the solid.
Here we turn our attention to crystalline metals whose metallic bonding results
in the formation of a sea of mobile electrons present within the crystal. Like
phonons, these mobile electrons carry around energy and consequently con-
tribute to the specific heat. But they also carry around charge and so contribute
also to the electrical conductivity of the metal.

In this chapter, we begin with a simplistic model of the mobile electrons as
quantum mechanical waves trapped within an infinite square well potential.
This model is known as the free electron model because the interaction of the
electron with the ion cores of the metal lattice is disregarded. The electron is
only trapped by the confines of the crystal itself. Although this simple model is
unable to capture all the experimental features of conduction in metals, it
readily accounts for the smallness of the electron contribution to the specific
heat and does provide a simple interpretation of such electron emission
phenomena as the photoelectric effect.

12.1 Mobile electrons

In the previous chapter, we saw that the prominent mechanism for storing thermal
energy in a crystal appears in the formof quantized vibrations of the crystal lattice,
known as phonons. Because of the rules that govern the quantization of these
phonons, the specific heat of the crystal violates the classical Dulong–Petit law at
low temperatures and is best described by the Debye model.

In metals, however, there is an additional mechanism available for the
storage of thermal energy in the crystal. Recall that metals are crystals held
together by metallic bonds. These are bonds in which the valence electrons of
the constituent atoms are fully dissociated. These free electrons roam about in
the crystal much like a gas of negatively charged particles and form the
cohesive glue that holds the positively charged ion cores into an ordered
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arrangement. In the case of a metal, there are then two contributions to the
specific heat. The first is the Debye contribution which is associated with the
phonons that surf the elastic waves superimposed on the lattice of ion cores.
The second arises from the motion of the electrons, which when freed from the
atoms, possess an additional set of translational degrees of freedom. Moreover,
because the electrons possess charge, their motion can be influenced by an
externally applied electric field to produce a measurable conductivity.

These features are evident in measurements conducted on monovalent
potassium, shown in Fig. 12.1 and Fig. 12.2. In Fig. 12.1, an excess contribu-
tion to the specific heat is seen which is proportional to the temperature.
Together with the Debye contribution the total varies as C ¼ AT þ BT3. In
Fig. 12.2, the electrical resistivity of potassium increases linearly with tem-
perature over a large range, with the exception of very low temperatures, where
it approaches a fixed value dependent upon the purity of the sample.
Altogether, the electrical resistivity of a sample follows an empirical formula,

rðTÞ � rimp þ rphononðTÞ; ð12:1Þ

known as Matthiessen’s rule.

12.1.1 The classical (Drude) model

Because the electrons in a metal form something akin to an ideal gas (i.e.
point-like particles whizzing about randomly and occasionally colliding with
other electrons or the ion cores), it is quite reasonable to apply classical kinetic
theory of gases to this problem. In this view, the electrons are treated as point
particles and move around randomly with an average thermal speed given by
the equipartition theorem,

U=N ¼
1

2
mu2therm ¼

3

2
kBT ; ð12:2Þ
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Figure 12.1 Specific heat (divided by T ) of potassium plotted against T2 at low temperatures. The fit to a straight

line is evidence for an additional contribution (linear in temperature) due to mobile electrons.

(Adapted from Lien and Phillips, 1964.)
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and contribute to the specific heat by a temperature-independent amount
Ce
V ¼ ð3=2ÞR per mole. Already we spy a problem. Measurements like those

shown in Fig. 12.1 suggest that the true contribution is only about 1% of this
magnitude near room temperature and, moreover, decreases linearly with
decreasing temperature.

What does the classical picture predict regarding the conductivity of the
electrons? Although the electrons whiz about with an average thermal speed,
they are unable to travel very far before encountering an obstacle and undergo-
ing some form of elastic collision, as shown in Fig. 12.3. Much like a particle
undergoing a random walk, the electron dashes about in random directions
following each collision. The mean free path of the electron, lmfp, is given by
the product of the average thermal speed and a mean collision time,

lmfp ¼ uthermtcoll: ð12:3Þ

Since the electrons are treated as point particles, the most likely candidates for
collisions are the more sizable ion cores for which the mean free path would be
comparable to the atomic spacing. Consider now what happens when an
electric field is introduced. We know that Ohm’s law predicts that the electric
field will produce a steady-state current density, given by

J ¼ sE; ð12:4Þ
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where s is the conductivity and E the magnitude of the applied electric field. But
under the influence of an electric field, each electron is individually accelerated
and so the resulting current should continue to increase with time, in violation of
Ohm’s law. In order to stem this acceleration, wemust assume the collisions that
the electrons experience are such that they provide an effective drag force that
competes with the accelerating electric field. Much like the drag experienced by
a parachute, this would then lead to a steady-state ‘drift’ velocity of the electrons
and a constant current. This is the idea behind the Drude model of conduction
wherein the average impulse (change inmomentum) experienced in collisions is
comparable to the average incident momentum,

Dp � Fdragtcoll � �mudrift: ð12:5Þ

Under steady-state conditions, the accelerating force is just cancelled by the
drag force,

Fnet ¼ Fdrag � eE ¼ 0; ð12:6Þ

and the drift speed is given as,

udrift ¼
�eEtcoll

m
: ð12:7Þ

The current density is then given by,

J ¼ nqudrift ¼
nee

2tcoll

m

� �

E; ð12:8Þ

where ne is the density of the mobile valence electrons. We see in Eq. (12.8)
the form of Ohm’s law with the resistivity given by,

r ¼
1

s
¼

m

nee2tcoll
¼

mutherm

nee2lmfp
: ð12:9Þ

Measurements of the temperature dependence of the resistivity of metals
display a linear temperature dependence over a wide range, which is simply
not supported by the Drude model. In the Drude model, the temperature
dependence enters through the average thermal speed, which in Eq. (12.2) is
seen to vary only as the square root of the temperature.

12.2 Free electron model

As you might have already surmised, the classical model fails mainly
because it is “classical” and so ignores the wave nature of the electron.
When we treat the electron as a wave, we encounter some familiar features
that are identical with those of the elastic waves studied in previous
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chapters. Namely, because of the finite extent of the crystal, the electron
waves are bounded and so limited to a discrete set of allowed wavelengths
and energies. But there are also important differences between phonons and
electrons. Firstly, the electron is a fermion. Unlike the phonon (which is a
boson), the electron must obey Pauli exclusion and only one electron can
occupy a given quantum mechanical state at any given time. This restriction
alone leads to significant changes in the distribution or occupancy of the
electron energy levels. Secondly, the electron wave function is a measure of
the electron density in space and (unlike phonons) is not restricted by the
limits of the Brillouin zone boundary. While it was meaningless to discuss
an elastic wave with a wavelength shorter than 2d, it is perfectly legitimate
to discuss an electron density existing within this distance (i.e. outside the
first Brillouin zone). And finally, the electron possesses the property of
electrical charge which gives rise to measurable electrical properties of the
material.

Let us begin by considering a single, metallic atom that has Z valence
electrons. Examples would include Na with Z ¼ 1 or Ca with Z ¼ 2. In either
instance, the valence electrons are loosely bound to the remaining ion core and
experience a potential energy something like that sketched in Fig. 12.4a,
arising from the Coulomb attraction:

V ðrÞ ¼ �Ze2=4peor: ð12:10Þ
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Figure 12.4 (a) The Coulomb potential of an isolated ion core. (b) The collective potential of an ordered

one-dimensional crystal of ion cores, illustrating reduction of the potential in the interior due to

overlap. The gray boundary suggests the free electron model approximation, in which the true

potential is replaced by that of an infinite square well potential.
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The bound energy states of the electron would be given by the time-independent
Schrödinger equation:

Hcn ¼ �
�h2

2m
r2 þ V ðrÞ

� �

cn ¼ Encn; ð12:11Þ

and would mimic those of a hydrogen-like atom.
But now, consider the Coulomb potential of a one-dimensional crystal, as

sketched in Fig. 12.4b. The ion cores are uniformly spaced and each produces
an individual Coulomb potential, given as in Eq. (12.10). However, note that
when these individual potentials are superimposed and combined to form the
net potential, the overlap between adjacent potentials results in significant
reduction of the potential inside the crystal. The valence electrons are no
longer bound to any single ion core, but are able to move throughout the
crystal and are bounded only by the edges of the crystal, where the potential
well rises sharply. Inside the crystal, the net potential appears as a periodic
series of small potential energy “bumps.”

As a first stab at a quantum mechanical description of the electron’s motion,
we make a brash approximation. We assume that the bumps in Fig. 12.4b are
much smaller than the walls and treat the overall potential as that of an infinite
well. In this approximation, known as the free electron model, the behavior of
the electrons reduces to that of the familiar “particle-in-a-box” problem in
which the allowed electron wavelengths are given by the standing wave
patterns:

ln ¼ 2L=n; ð12:12Þ

and the allowed energy levels are given by,

En ¼ p2=2m ¼ n2
h2

8mL2
¼ n2E1: ð12:13Þ

Although Eq. (12.13) is a familiar result, beware, the energy levels are much
more closely spaced than those in the hydrogen atom because the size of the
box (L) now corresponds to the macroscopic size of the crystal (Ex. 1).

12.2.1 Fermi level

A crystal with N atoms has a total of Ne ¼ ZN free electrons that must be
distributed into the energy levels in accordance with the Pauli exclusion
principle. Since an electron has two independent spins (up and down), each
energy level, described by Eq. (12.13) for a 1D crystal, can support no more
than two electrons. At absolute zero, these electrons will settle into the
lowest energy configuration possible (i.e. a ground state configuration),
which corresponds to a stacking of electron pairs into the energy levels
from the lowest, then upwards until all the electrons have been accounted
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for, as illustrated in Fig. 12.5. The uppermost filled energy level is then
given by,

nF ¼ Ne=2: ð12:14Þ

This uppermost filled level is known as the Fermi level and has a correspond-
ing energy, given for the 1D case from Eq. (12.13) as,

EF ¼
Ne

2

� �2

E1; ð12:15Þ

known as the Fermi energy. For typical metals, shown in Table 12.1, the Fermi
energy is in the range 2 to 10 eV (or Fermi temperatures, TF ¼ EF/kB in the
range 20,000 to 100,000 K). The electrons in this Fermi level have a corres-
ponding average speed, uF , given by,

EF ¼
1

2
mu2F; ð12:16Þ

which is in the range of 2� 106 m/s or about 1% the speed of light. This is
rather fast, but still amenable to a non-relativistic treatment.

12.2.2 Specific heat

We will return to the issues of electron conduction shortly, but first let
us see what our free electron model predicts for the specific heat
contribution associated with the electron gas. Because the electrons are
fermions, their thermodynamic properties are governed by the Fermi–Dirac

energy distribution:

PFDðEÞ ¼ exp ðE � mÞ=kBT½ � þ 1f g�1; ð12:17Þ

where m is known as the chemical potential. This distribution function
expresses the probability that a level of energy E will be occupied at a given
temperature. As seen from consideration of Eq. (12.17), m marks the energy of
the level that is 50% filled and, for most modest temperatures, this chemical
potential remains very nearly equal to the Fermi energy (m � EF ).

At absolute zero, this distribution assumes the shape of a step function in
which all the levels below EF are filled (each with two electrons) and all those
above EF are empty. As the temperature is increased, the distribution function
spreads somewhat, as shown in Fig. 12.6, and at extremely high temperatures,
the distribution becomes quite asymmetric near EF.

Now, before we go any further, we should take a small reality check. As is
evident from the melting points included in Table 12.1, most metals remain
crystalline only at temperatures well below about 2000 K and so the only
distributions shown in Fig. 12.6 that will have any relevance for crystalline
solids are those (y ¼ TF=T > 30) for which the distribution remains

Fermions

Bosons

E2

E3

E4

E1

E2

E3

E4

E1

Figure 12.5

A comparison of the occupancy of

energy levels by fermions and

bosons. Fermions obey Pauli

exclusion and thus only two

electrons (spin up and spin down)

are allowed in each energy level.

Bosons (e.g. phonons and

photons) are not restricted by

Pauli exclusion and any number

can occupy a given energy level.
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symmetric about EF and which display only a minimal deviation from the step
function observed at absolute zero. Near EF, one finds (Ex. 5) the slope of
PFDðEÞ is 1/4kBT and hence, for a wide range of “terrestrial” temperatures, the
only electrons that can be excited beyond the Fermi energy are those within
about 2kBT of the Fermi level. How many electrons meet this condition?
Consider the energy levels just below nF, as illustrated by the shaded triangle
in Fig. 12.6. The energy of these levels can be expressed in terms of the Fermi
energy as

En ¼ n2E1 ¼ ðnF � DnÞ2E1 ¼ 1� Dn=nFð Þ2EF : ð12:18Þ

Since Dn is much smaller than nF, we can use the binomial expansion to obtain
the energy near EF as

En � 1� 2Dn=nFð ÞEF ; ð12:19Þ

and for an energy difference of 2kBT, the range of excitable levels is given by,

2kBT ¼ EF � En � 2DnEF=nF : ð12:20Þ

Since there are roughly Nex � Dn=2 electrons, represented by the
shaded triangle in Fig. 12.6, the total number of excitable electrons is
given by,

Table 12.1 Electrical properties of several metallic elements. (Values obtained from Handbook of Chemistry and Physics
(1983) and from C. Kittel (2005).)

Z

ne

(1028 m�3)

at 293 K

EF

(eV)

TF

(104 K)

uF

(106 m/s)

s (107

mho/m)

at 293 K

RH

(10�10m3/C)

Tm

(K)

f

(eV)

lmfp

(Å)

Li 1 4.63 4.74 5.51 1.29 1.1 –1.7 453 2.9 105

Na 1 2.54 3.24 3.77 1.07 2.1 –2.07 371 2.75 305

K 1 1.34 2.12 2.46 0.86 1.4 –4.23 336 2.3 310

Rb 1 1.08 1.85 2.15 0.81 0.83 –5.04 312 2.16 201

Cs 1 0.85 1.59 1.84 0.75 0.5 – 301 2.14 148

Cu 1 8.45 7.00 8.16 1.57 5.9 –0.54 1336 4.65 390

Ag 1 5.86 5.49 6.38 1.39 6.2 –0.9 1234 4.26 526

Au 1 5.77 5.53 6.42 1.40 4.5 –0.72 1337 5.1 376

Be 2 24.7 14.3 16.6 2.25 2.5 þ2.43 1551 4.98 80

Mg 2 8.62 7.08 8.23 1.58 2.3 –0.83 922 3.66 145

Ca 2 4.63 4.69 5.44 1.28 2.9 – 1112 2.87 245

Zn 2 13.2 9.47 11.0 1.83 1.7 – 693 4.33 82

Cd 2 9.26 7.47 8.68 1.62 1.4 – 594 4.22 89

Al 3 18.1 11.7 13.6 2.03 3.8 þ1.02 933 4.28 148

Ga 3 15.3 10.4 12.1 1.92 0.71 – 303 4.2 25

In 3 11.5 8.63 10.0 1.74 1.2 þ1.6 430 4.12 64
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Nex �
Dn

2
¼

nF

2

T

TF
¼

Ne

4

T

TF
: ð12:21Þ

Only these Nex electrons are able to access thermal energy and participate in
the exchange of heat with an external environment needed to produce a
contribution to the specific heat. All other electrons are “locked” into their
energy states and cannot participate. The amount of additional energy gained
by these Nex electrons is roughly 3kBT/2 for each, and the corresponding
contribution to the internal energy is

U � 3Nex kBT=2 �
3NekB

8

T2

TF
: ð12:22Þ

Hence, the contribution to the specific heat is of order,

CV ¼ dU=dT �
3

4
R

T

TF

� �

ð12:23Þ

per mole of electrons. This result matches well with experiment. It contains
both the linear temperature dependence and, because TF � 30,000 K, accounts
for roughly 1% of the classical value near room temperatures, as observed.
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Figure 12.6 The Fermi–Dirac distribution function plotted against energy (scaled to the Fermi energy) is

shown for various temperature ratios y ¼ TF/T. For y > 10, the distribution is well approximated by

a step function. Inset shows an enlarged view of the distribution for y ¼ 100 and the linear

approximation to the shape near EF. The number of excited electrons is roughly proportional to the

area of the shaded triangle.
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A more exact calculation yields nearly the same result to within a factor of
order unity.

12.2.3 Emission effects

The simple free electron model also helps to explain a number of electron
emission phenomena, including thermionic emission, field emission, and the
photoelectric effect. These three processes are sketched in Fig. 12.7, where the
electron levels are indicated. The uppermost level is the Fermi level that
resides at some energy difference, f, below the zero potential of the outside
vacuum. This energy difference is known as the work function and is a
measure of the minimum energy input required to emit an uppermost electron
to the exterior.

In thermionic emission, shown in Fig. 12.7b, thermal energy (kBT) supplied
to the crystal is sufficient to overcome the work function. In the photoelectric
effect, shown in Fig. 12.7c, incident photons provide the needed energy.
Because photons are energy quanta, photoelectric emission will occur only
for photons whose energy meets or exceeds the work function. Excess photon
energy, beyond that of the work function, appears as kinetic energy of the
emitted electron.

The field emission process involves tunneling of the electron from the Fermi
level into the vacuum. In order for this to happen, a narrow potential energy
barrier must be formed through which the electron has a significant probability
for tunneling. By applying an external electric field, the potential outside the
crystal is distorted, as shown in Fig. 12.7d. On one side the potential is raised,
while on the other side it is lowered and forms a barrier whose width is
controlled by the magnitude of the applied field.

12.2.4 Free electron model in three dimensions

To deal with real crystals, we must extend our quantum mechanical model to a
three-dimensional space, where the Schrödinger equation is now expressed as,

�
�h2

2m
r2cK ¼ EKcK : ð12:24Þ

We then assume corresponding plane wave solutions for the electron wave
function of the form,

cKð~rÞ ¼ Aei
~K�~r ¼ AeiKxxeiKyyeiKzz; ð12:25Þ

and find that the allowed energies are given by,

EK ¼
�h2

2m
K2
x þ K2

y þ K2
z

n o

¼
�h2 ~K
�

�

�

�

2

2m
: ð12:26Þ
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However, the electrons are still contained in a box formed by the boundaries of
a macroscopically large, three-dimensional crystal. To enforce this limitation,
we again apply the periodic boundary conditions, introduced previously in
Chapter 10 for the restriction of phonon modes in a three-dimensional crystal.
Specifically, we demand that the wave functions repeat themselves after some
large distance, L¼Na, such that

cKð~rÞ ¼ cKð~r þ Lx̂Þ ¼ cKð~r þ LŷÞ ¼ cKð~r þ LẑÞ: ð12:27Þ

Application of the periodic boundary condition to the wave function in Eq.
(12.25) leads to the constraint

eiKxNa ¼ eiKyNa ¼ eiKzNa ¼ 1; ð12:28Þ

and the allowed electron modes are then given as

Kx;Ky;Kz ¼ �n
2p

Na
; n ¼ 1; 2; � � �1: ð12:29Þ

Note that these modes are virtually identical with those of the phonons
discussed in Chapter 10 and can again be represented as a uniformly distrib-
uted set of discrete points in a three-dimensional K-space, as shown in
Fig. 12.8. Again, the density of states is

gðKÞdK ¼ VK2=2p2
� �

dK: ð12:30Þ

The only differences are that, (1) while phonons were only meaningful
for K inside the Brillouin zone (i.e. for l > 2d), the electron waves
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Fermi 

surface

Figure 12.8 A representation of the K-space for allowed electron wave functions in a three-dimensional

crystal. Each allowed mode is represented by a dot in the upper right figure. At low temperatures,

electrons occupy modes nearest the origin, filling K-space in an approximately spherical fashion. The

highest energy electrons reside on the surface of this sphere known as the Fermi surface.
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outside the Brillouin zone remain meaningful, and (2) while an unlimited
number of phonons could occupy a given mode, only two electrons (one
spin up and the other spin down) are allowed to occupy a mode. Conse-
quently, in the ground state, electrons will fill in the lowest energy levels
nearest the origin in Fig. 12.8, expanding radially outwards until all Ne

electrons are accounted for, forming a spherical pattern in K-space
centered at the origin. The outermost electrons on the surface of this
sphere are those with the largest kinetic energy and so the outer surface
forms what is known as the Fermi surface. This surface is simply the 3D
analog of the Fermi level introduced earlier. To determine the Fermi
energy at this surface, we just need to fill the modes from the center
outwards until we account for all Ne¼ ZN electrons. Thus, for two
electrons per mode,

Ne ¼

ð

KF

K¼0

2
V

8p3

� �

ð4pK2dKÞ; ð12:31Þ

from which

KF ¼
3p2Ne

V

� �1=3

¼ 3p2ne
� �1=3

ð12:32Þ

and

EF ¼
�h2K2

F

2m
¼

�h2

2m
3p2ne
� �2=3

: ð12:33Þ

12.2.5 Conduction in the free electron model

How does electron conduction appear in this three-dimensional free electron
model? Since we are now treating the electron as a wave, we need to consider
how an external electric field might affect the electron wave function. The
momentum of the electron is given by the product of its mass and group velocity,

p ¼ mug ¼ m
do

dK
¼

m

�h

dE

dK
¼ �hK; ð12:34Þ

and, in this instance of a free electron, matches that given by the deBroglie
relation. Under the application of a constant uniform electric field, Newton’s
second law reads as,

~F ¼
d~p

dt
¼ �h

d~K

dt
¼ �e~E; ð12:35Þ

from which we see that the mode (K) of the electron increases at a rate
proportional to the strength of the field:
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d~K

dt
¼ �e~E=�h: ð12:36Þ

Because the electron states are discrete, this means that the electric field forces
the electron to “jump” from one dot in K-space to the next adjacent dot by
either shortening or lengthening its wavelength. Since this applies to all the
electrons in the crystal, the entire sphere of occupied modes is shifted at a
constant rate in the direction opposite to the field, as illustrated in Fig. 12.9.
Without the field present, the sphere is initially unshifted and the momenta of
all the electrons are balanced such as to produce no net momentum and hence
no net flow of charge. Conversely, in the presence of the electric field, this
balance is removed and a net momentum, produced by a small fraction of
electrons near the Fermi surface traveling in a direction opposite to the field,
produces a net current in the crystal.

Of course, Eq. (12.36) implies that this current would increase continuously
over time, in an apparent violation of Ohm’s law, and so to compensate, we
must assume (as in the classical picture) that the electrons still undergo
collisions of some sort. What are some of the objects that might interfere with
electron propagation? They certainly include the ion cores of the lattice, as
well as the other electrons and impurities that might be present. Returning to
the Drude expression for the conductivity, we now replace the thermal average
speed by the corresponding speed for electrons near the Fermi surface and find,

s ¼
nee

2tcoll

m
¼

nee
2

muF
lmfp: ð12:37Þ

When the mean free path is evaluated from measurements of the conductiv-
ity of metals (see Table 12.1), one may be surprised to find that the mean free
path is quite large – indeed far larger than the typical spacing between the ion
cores. It seems then that these ion cores do not serve as any impediment to
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Figure 12.9 (a) In the absence of an external electric field, the occupied electron modes are symmetrical

about the origin of K-space. As a result, there is no net momentum to produce an electrical current.

(b) When an external field is applied, electrons near the Fermi surface are promoted to modes

of higher energy and a net momentum results in the direction opposite the field.
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electron motion. Why is that? There are at least as many ion cores as there are
electrons and they would seem to be an easy target!

The answer lies in our quantum mechanical treatment, where the electron is no
longer viewed as a classical particle, but rather as a wave.Waves, as we have seen
repeatedly in Chapter 6 and Chapter 7, travel largely unscattered through a crystal
because the atoms of the crystal are perfectly arranged in a periodic manner. For
light waves, this absence of scattering is interpreted as a consequence of the
Ewald–Oseen extinction theorem of classical optics. For X-rays, scattering only
occurs for a discrete set of waves that happen to satisfy the Bragg scattering
condition (~q ¼ ~Ghkl). All other waves that do not satisfy this Bragg condition
(including electron waves) are simply unaffected by a perfectly periodic lattice.

Since the ion cores are ineffective in scattering the electrons, what then deter-
mines the mean free path? Since the scattering of the electrons is not caused by the
periodic arrangement of ion cores, it must be a result of imperfections in that
periodicity. These imperfections could be dislocations at which the periodic pattern
is abruptly shifted, or impurities in the crystal that likewise alter the periodicity.
This would then account for the rather large mean free path seen experimentally.

But what of the temperature dependence of the resistivity which increases
linearly with temperature? This feature arises from the wealth of phonons
present in the crystal, which not only disturb the perfect periodicity of the
lattice, but also participate in scattering with the electrons. As we saw in the
previous chapter, the mean free path for phonon scattering decreases with
increasing phonon density. At high temperatures, this phonon density increases
linearly with temperature (see Eq. (11.30)), and from Eq. (12.36), one sees that
the scattering of electrons by the phonon gas produces a linearly temperature-
dependent contribution to the resistivity. Together with the impurities dis-
cussed above whose mean free path is temperature independent, these two
mechanisms account well for the observed Matthiessen’s rule of Eq. (12.1).

12.2.6 Hall effect

The Hall effect provides a reliable method for determining the density of conduc-
tion electrons in a metal and, as we will see in a moment, raises some important
problems for the free electron model. Consider a rectangular bar of metal, as
illustrated in Fig. 12.10, that is placed in crossed electric and magnetic fields as
shown. The electric field directed along the length of the bar propels electrons in
the opposite direction, while their motion in themagneticfield forces the electrons
to veer off towards the side of the bar. After some time, a steady-state situationwill
develop in which the electron density is higher on one side of the bar than on the
other, producing a detectable voltage difference.

The equation of motion of an electron under these conditions is given by,

~F ¼
d~p

dt
¼ �e ~E þ~u�~B

� �

�
~p

tcoll
; ð12:38Þ
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where�
~p

tcoll
is the effective drag force (see Eq. (12.5)) that retards the

electron’s acceleration. Because there is no applied force in the vertical direc-
tion, Eq. (12.38) results in two simultaneous equations for motion of the
electron in the horizontal plane of the bar:

m
d

dt
þ

1

tcoll


 �

ux ¼ �e Ex þ uyB
� �

m
d

dt
þ

1

tcoll


 �

uy ¼ �e Ey � uxB
� �

:

ð12:39Þ

When steady-state conditions are reached, the accelerations vanish and uy ! 0
such that the above two equations each reduce to

ux ¼ �eExtcoll=m

ux ¼ Ey=B:
ð12:40Þ

The Hall field, Ey, associated with the vertical voltage difference, is then
given as,

Ey ¼ �eExtcollB=m: ð12:41Þ

By knowing the magnitudes of the two applied fields and measuring the Hall field
and current density along the length of the bar, one candetermine theHall coefficient,

RH 	 Ey=JxB; ð12:42Þ

which, upon substitution of Eq. (12.41) and Eq. (12.8), can be expressed as,

RH 	 Ey=JxB ¼
�eExtcollB=m

nee2tcoll
m

Ex

� �

B
¼ �

1

nee
: ð12:43Þ

Measurements of the Hall coefficient for a variety of metals are presented in
Table 12.1. Although several values are negative, as they should be for
conduction by electrons, a handful of materials exhibit anomalous positive
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Figure 12.10 View of a conducting metallic bar situated in crossed magnetic and electric fields. Electrons

entering from the left travel to the right under the influence of the applied electric field, but

are forced downwards by the magnetic field. Under steady-state conditions, a higher density of

electrons is found flowing along the lower side of the bar than along the upper side, creating

a vertical potential known as the Hall field, Ey .
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coefficients. These present a real puzzle, as our picture of the metal is one in
which the positive ion cores are affixed to an immobile lattice and only the
electrons are free to propagate around. The positive Hall coefficients appear to
suggest that there exist some form of positively charged particles that provide
the conduction in some metals. To resolve this puzzle will require a revision of
our free electron model, in which the periodic bumps in the potential (see
Fig. 12.4b) formed by the ion cores are not ignored.

Summary

c Electrons are fermions and, unlike phonons, are constrained by Fermi–
Dirac statistics. In the ground state, the electrons of a crystal fill in
lowest energy states up to the Fermi level, EF.

c Conduction electrons in a metal produce a small contribution to the
specific heat, in addition to the Debye specific heat caused by phonons.
Only those electrons near the Fermi level participate in this
contribution.

c Like phonons, the quantum mechanical wave function of the electron is
restricted by boundary conditions to assume one of a discrete set of
allowed modes, K. Each mode can be occupied by no more than two
electrons (with spins opposed).

c The finite resistivity of a metal results from electron collisions, either
with lattice imperfections or scattering by phonons. Together, these two
processes account for Matthiessen’s rule, rðTÞ � rimp þ rphononðTÞ.

c The Hall effect allows both the density and sign of charge carriers to be
determined. Instances of a positive Hall coefficient indicate the domin-
ance of anomalous positive charge carriers in the overall conduction of
some materials.

Exercises

12.1. Compute the ground state energy of a 1D crystal of size L ¼ 1 cm and
compare this with the ground state energy of a hydrogen atom (13.6 eV)
and to the value of kBT at room temperature.

12.2. The kinetic energy of an electron gas is given by
U ¼

Ð1
0 EPFDðEÞgðEÞdE. Show that the kinetic energy of a 3D gas of

Ne free electrons at 0 K is Uo ¼ ð3=5ÞNeEF .
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12.3. Show (from your finding in Exercise 12.2) that the pressure of an
electron gas is two-thirds of the kinetic energy per unit volume.

12.4. A 3He nucleus has spin ½ and, like electrons, must also obey the Pauli
exclusion such that it fills a boxwith two atoms per quantum state (one with
spin up and the other spin down). Calculate the corresponding Fermi energy
and Fermi temperature for liquid 3He if it has a density of 0.059 g/cc.

12.5. Consider the Fermi–Dirac distribution function given in Eq. (12.17) with
m taken to equal EF. (a) Show that the slope of PFDðEÞ at EF is�(4kBT)

�1.
(b) Show that � @PFD

@E is symmetrical and that its integral is unity. How
does this function compare with that of the Dirac delta function?

12.6. Pure gold is commonly labeled as “24 karat”. A lower purity form of
gold containing 4.2% of impurities is labeled as “23 karat”. (a) Suppose
that the impurities in a 23 karat gold specimen are evenly distributed
within the gold crystal. What mean free path is associated with these
impurities? (b) Assume that the conductivity of pure gold, given at room
temperature in Table 12.1, is that due to phonon scattering alone. Use
Matthiessen’s rule to determine the conductivity you would expect to
find for the 23 karat specimen.

12.7. Assuming that Eq. (12.23) properly expresses the specific heat contribu-
tion of the conduction electrons, show that the contribution of these
electrons to the thermal conductivity is kth ¼ nk2BTtcoll=2m.

12.8. In Chapter 4, we found that paramagneticmaterials exhibit the Curie law, in
which themagnetic susceptibility increaseswith decreasing temperature, as

given by Eq. (4.20): wm ¼ dM
dH ¼ nmo

g2m2
B
JðJþ1Þ
3kBT

¼ C
T
. For metals containing

Ne mobile conduction electrons, we would expect to find a corresponding
paramagnetic contribution, only, with n replaced by ne ¼ Ne /V. However,
the fermion character of these mobile electrons limits their response to an
applied magnetic field. Show that in this case of so-called Pauli spin
paramagnetism, the susceptibility associated with the conduction electrons

is temperature independent and given as wm ¼ nemo
m2
B

4EF
.
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13 Electrons: band theory

Introduction

In the last chapter, we took a brash and somewhat unrealistic approach to
treating the motion of electrons in a crystal. Although we know that the
electron travels through a periodic potential caused by the regular arrangement
of ion cores, we disregarded this “bumpy terrain” and considered instead only
the barest consequences of the electron being trapped in the crystal “box” as a
whole. In spite of its simplicity, this free electron model provided insightful
explanations, not only for the origin of the small electronic contribution to
specific heat and the temperature dependence of the electrical resistivity, but
also for a host of emission phenomena, including the photoelectric effect.

However, the free electron model fails to provide any insight into additional
questions regarding electrical conduction, such as (1) the anomaly of positive
Hall coefficients that would imply positive charge carriers, and (2) the peculiar
pattern of conductors, insulators and semiconductors that is found in the
periodic table. In this chapter, we examine the nearly free electron model as
a natural extension in which a weak, periodic potential is introduced. As a
direct consequence of this addition, the continuum of electron energies in our
free electron model now becomes separated into bands of allowed electron
energy, separated by disallowed energy gaps. This separation of the electron
energy into bands and gaps is key to understanding the division of materials
into conductors, insulators and semiconductors, as well as providing a natural
interpretation for the positive Hall coefficients.

13.1 Nearly free electron model

13.1.1 Bloch functions

In the free electron model of the previous chapter, the potential was uniformly
zero inside the crystal, because we ignored the small bumps created by the
overlap of the Coulomb potential of neighboring ion cores. As a consequence
of ignoring these bumps, the electron wave function assumed a simple plane
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wave constrained only by the physical boundary of the crystal itself, and its
energy was completely kinetic. In reality, these bumps exist and so the
potential is not quite exactly zero inside the crystal. As illustrated in
Fig. 13.1, this non-zero potential forces the kinetic energy of the electron to
now vary as it travels through the crystal and will require some corresponding
modification of the electron wave function to achieve this spatial dependence.

One feature in our favor is that the potential inside is periodic and so repeats
itself at regular multiples of the lattice spacing:

V ðxÞ ¼ V ðxþ dÞ: ð13:1Þ

Without going into a full-scale assault on the Schrödinger equation for this
situation, we can infer a number of properties of the electron wave function
that would result from such a periodic potential. There are two conditions we
can place on the allowed electron wave functions. The first is just the restric-
tion set by the cyclic boundary conditions that reflect the finite extent of the
crystal,

cðxÞ ¼ cðxþ NdÞ: ð13:2Þ

The other condition arises from the crystal symmetry. Although the electron
is propagating through the crystal, its time-averaged electron density should
appear the same in every unit cell of the crystal. In other words, there should
not occur any cell that appears different from another by virtue of having
some additional accumulation of negative charge. Since the electron density

(a)

(b)

K.E. K.E. K.E.

E

+ + + + + + ++

K.E.
K.E. K.E.

E

Figure 13.1 (a) In the free electron model, the kinetic energy of the traveling electron remains constant. (b) In

the nearly free electron model, the traveling electron must contend with a spatially varying potential

energy causing the electron's kinetic energy to vary accordingly.
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is proportional to the square of the electron wave function, this condition
means that,

cðxÞj j2 ¼ cðxþ dÞj j2; ð13:3Þ

or that,

cðxþ dÞ ¼ eifcðxÞ: ð13:4Þ

The type of wave functions that are consistent with these two conditions are
known as Bloch wave functions, and have the form of a modulated traveling
wave:

cKðxÞ ¼ uKðxÞeiKx; ð13:5Þ

such that the modulation is repeated for every unit cell of the lattice,

uKðxþ dÞ ¼ uKðxÞ: ð13:6Þ

13.1.2 Bragg scattering and energy gaps

As we migrate over from the free to the nearly free electron model, we in a
sense are “turning on” the lattice potential. Clearly this will distort the electron
wave function to assume a periodic modulation in the form of a Bloch wave,
but it also has another important consequence. As the periodic lattice appears,
so too do the familiar Brillouin zones and their boundaries, at which waves
satisfy the Bragg scattering condition.

Imagine an electron traveling along the (100) direction of a simple
cubic lattice with ~Kx ¼ þp=d. Because this ~Kx coincides with the edge
of the first Brillouin zone, the electron is strongly scattered to
~K 0 ¼ ~Kx � ~G100 ¼ �p=d, and appears (almost magically it seems) on the
opposite side of the Brillouin zone. That is, the incident wave spawns a
scattered wave of the same wavelength but traveling in the opposite direc-
tion. But wait, this new wave also lands on the edge of the Brillouin zone
and so is strongly scattered back into the original wave! Multiple scattering
reflections quickly evolve into equal portions of electron probability travel-
ing in both directions, and so the electron assumes the properties of a
standing wave.

In all respects, this standing wave feature is not new. You may recall we
observed a similar standing wave feature appear for phonons at the first
Brillouin zone boundary. Moreover, you might recall that in the case of a
diatomic lattice, the phonon energy at the boundary was split into two
possible values depending on which atom of the diatomic lattice (the
light or the heavy one) was in motion. As illustrated again in Fig. 13.2a,
the high energy state corresponded to motion of the lighter atom and
formed the terminus of the optical branch, while the low energy state,
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corresponding to motion of the heavier atom, formed the terminus of the
acoustic branch. Each wave shares a common wavelength of l ¼ 2d, but
differs in phase angle by a quarter cycle.

In the case of the standing electron wave, we can again anticipate a splitting
of the energy into two values, corresponding to the two equivalent standing
wave patterns that differ only by a quarter cycle in phase. As illustrated in
Fig. 13.2b, the energy of the electron is lower when the electron density is
centered on the ion core and higher when the electron density is centered
between the ion cores.

13.2 Kronig–Penney model

For those not swayed by the simple arguments above, let us also illustrate the
effects of a periodic potential by tackling Schrödinger’s equation for a simple,
1D model that was first presented by Kronig and Penney (1931). In this
simplistic model, the bumps of the potential are simulated by a series of small,
narrow, periodically spaced barrier potentials, as illustrated in Fig. 13.3. Each
barrier is described by

V ðxÞ ¼ Vo; �b < x < 0
0; 0 < x < a;

�

ð13:7Þ

+ + + + + + + + +

+ + + + + + + + +

π /d

ω optical

gap

acoustic

π /d

gap

E

�
2K 2

2m

(a)

(b)
y (x)

Figure 13.2 (a) Phonons in a diatomic crystal suffer an energy gap at the Brillouin zone edge due to two

possible standing wave patterns. (b) A similar energy gap develops for electrons near the

Brillouin zone edge.
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and the electron wave function must satisfy the one-dimensional Schrödinger
equation,

� �h2

2m

d2cK

dx2
þ VcK ¼ EcK ; ð13:8Þ

which for each of the two regions of the barrier potential becomes

ðIÞ d2cI
K

dx2
þ 2m

�h2
E � Vo½ �cI

K ¼ 0; �b < x < 0

ðIIÞ d2cII
K

dx2
þ 2m

�h2
EcII

K ¼ 0; 0 < x < a:

ð13:9Þ

On introducing the two quantities:

a2 ¼ 2m

�h2
E ð13:10Þ

b2 ¼ 2m

�h2
Vo � E½ �; ð13:11Þ

the Schrödinger equation, as it appears in each region, can be conveniently
expressed as,

ðIÞ d2cI
K

dx2
� b2cI

K ¼ 0; �b < x < 0

ðIIÞ d2cII
K

dx2
þ a2cII

K ¼ 0; 0 < x < a:

ð13:12Þ

Our electron wave function is a Bloch function of the form given in
Eq. (13.5), and so these can quickly be reduced to statements regarding the
form of the modulation, uKðxÞ as,

ðIÞ d2uIK
dx2

þ 2iK
duIK
dx

� b2 þ K2
� �

uIK ¼ 0; �b < x < 0

ðIIÞ d2uIIK
dx2

þ 2iK
duIIK
dx

þ a2 � K2
� �

uIIK ¼ 0; 0 < x < a:

ð13:13Þ

The solutions to these two differential equations have the form,

uIKðxÞ ¼ Ae b�iKð Þx þ Be� bþiKð Þx

uIIKðxÞ ¼ Cei a�Kð Þx þ De�i aþKð Þx;
ð13:14Þ

V(x) =
Vo’ −b < x < 0

0, 0 < x < a

–b 0 a

V = Vo

d = a + b

Figure 13.3 The periodic potential in the Kronig–Penney model.
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where the various coefficients are determined by matching conditions at the
two boundaries:

ðiÞ uIKð0Þ ¼ uIIKð0Þ
ðiiÞ uIKð�bÞ ¼ uIIKðaÞ

ðiiiÞ duIK
dx

�

�

�

�

x¼0

¼ duIIK
dx

�

�

�

�

x¼0

ðivÞ duIK
dx

�

�

�

�

x¼�b

¼ duIIK
dx

�

�

�

�

x¼a

:

ð13:15Þ

After applying the matching conditions, we arrive at four simultaneous equa-
tions that determine the coefficients,

ðiÞ Aþ B ¼ C þ D

ðiiÞ Ae�ðb�iKÞb þ BeðbþiKÞb ¼ Ceiða�KÞa þ De�iðaþKÞa

ðiiiÞ ðb� iKÞA� ðbþ iKÞB ¼ iða� KÞC � iðaþ KÞD
ðivÞ ðb� iKÞAe�ðb�iKÞb þ�ðbþ iKÞBeðbþiKÞb

¼ iða� KÞCeiða�KÞa þ�iðaþ KÞDe�iðaþKÞa;

ð13:16Þ

which can be solved (Ex. 1) to obtain the following dispersion relation (a
relation between the energy of the wave, given by a2, and the wave vector K):

b2 � a2

2ab
sinhðbbÞ sinðaaÞ þ coshðbbÞ cosðaaÞ ¼ cos Kðaþ bÞ½ �: ð13:17Þ

This dispersion relation is a little complicated, but we can reduce it some-
what by narrowing the barriers (shrinking b) in such a way that the area (Vob)
of the barrier is not altered. In this limit, the hyperbolic functions can be
expanded (Ex. 7) as a Taylor series in first order and the relation reduced to,

P
sinðadÞ
ad


 �

þ cosðadÞ ¼ cos Kd½ �; ð13:18Þ

where the lattice spacing d � a and

P 	 mVoba

�h2
: ð13:19Þ

13.2.1 Energy bands and gaps

In Fig. 13.4, we have plotted the left-hand side of Eq. (13.18) as a function of the
“energy”, actually ad, for an arbitrarily chosen value of P ¼ 10. One sees that
the function oscillates in a damped-like manner. Also shown in the figure are
the limits of the cosine function for which the right-hand side of Eq. (13.18)
restricts the allowed solutions of the electron wave function. Apparently there
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are some portions of the oscillating function that are clipped off and reside outside
the limits of the cosine. These clipped sections of the curve therefore represent
sections of the energy axis (ad) that are forbidden. Sections of the oscillating
curve that lie within the limits of the cosine represent allowed energies.

Moving outwards along the energy axis, we see that the first allowed energy
band (corresponding to the first Brillouin zone extending from K ¼ 0 to K ¼
� p=d) begins well above zero energy and extends over a rather narrow range
of energies. This is followed by a forbidden band (or energy gap) that
terminates at the start of the next range of K, extending from K ¼� p=d to
K¼� 2p=d. This second band corresponds to the second Brillouin zone.
Additional allowed energy bands correspond to higher-order Brillouin zones.

Using the set of discrete K enumerated as in Eq. (12.29), we can determine
the corresponding energy of the electron wave and plot these energies now as a
function of K, as is done in Fig. 13.5a to represent the dispersion relation more
as we did for phonons in a previous chapter. In Fig. 13.5a, one sees the overall
appearance of an envelope,

Efree ¼
�h2K2

2m
; ð13:20Þ

which corresponds to the energy of electrons in the free electron model (where
the periodic “bumps” in the potential were ignored), but which is now punctu-
ated by energy gaps with two degenerate states at the boundaries of the
Brillouin zones. A common, space-saving representation of this energy dia-
gram is that of the reduced zone representation, shown in Fig. 13.5b, in which
each band is folded back into the first Brillouin zone by appropriate addition of
a reciprocal lattice vector, ~Ghkl. In this representation we clearly see the

P sin(ad)

ad
+ cos(ad) Allowed energies

Forbidden energies

0 π 2π

ad

Kd

cos (Kd)

0
–3

–2

–1

0

1

2

3

4

5 10 15 20

Figure 13.4 A plot of Eq. (13.18) for P ¼ 10 (solid curve) shows undulations as a function of the energy

parameter ad. Only those segments (white regions) of the curve between�1 can satisfy Eq. (13.18)

while other segments (hashed regions) represent forbidden energies.
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development of an energy-level diagram, consisting of bands of allowed
energy separated by forbidden energy gaps.

We can now consider two extremes: (1) P ! 0, in which the bumps in the
potential vanish, and (2) P ! 1, in which the bumps in the potential grow to
form a series of neighboring infinite well potentials. When the bumps vanish,
Eq. (13.18) reduces to,

cosðadÞ ¼ cos Kd½ � or a ¼ K; ð13:21Þ

for which we recover the free electron result of Eq. (13.20). The energy gaps
disappear as the bumps disappear. In the opposite limit, P ! 1, the oscillating
left-hand side of Eq. (13.18) makes vertical cuts through the allowed range of
the cosine on the right-hand side of Eq. (13.18) at K ¼ � np=d. The allowed
energy bands then narrow to discrete energy levels, such that

ad ¼ np; ð13:22Þ

or,

Ebound ¼ n2
h2

8md2
: ð13:23Þ

In this case, the electrons become bound to the ion cores and assume the
energy levels of a particle bound in a small box of size d.
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Figure 13.5 (a) The allowed energy levels of Figure 13.4 are plotted against the wave vector extending out

to the 3rd Brillouin zone. Dashed gray curve shows the corresponding energy of a free electron

(Eq. (12.26)). (b) In the reduced zone representation, the dispersion curves in each allowed

band are folded back (by appropriate addition or subtraction of a reciprocal lattice vector, Ghkl)

into the first Brillouin zone.
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13.2.2 Mott transition

Increasing P in the Kronig–Penney model basically amounts to increasing the
height of the bumps until they penetrate the energy band of the conducting
electrons, and force a narrowing of the band into a discrete level. An obvious
means for increasing the height of the bumps would be to increase the lattice
spacing, d, as this would decrease the overlap between neighboring Coulomb
wells (see Fig. 12.4). Several years ago, Sir Nevill Mott speculated on what
would happen to the electron wave function as a lattice was expanded, and
concluded that at some point, the Bloch wave functions that describe the
electron as an extended object, with electron density evenly distributed
throughout the entire crystal, would eventually collapse to localized wave
functions consistent with the electron bound to a single ion core. This metal-
to-insulator transition is often referred to as a Mott transition (see Mott, 1990).

As an extended wave function, each of the Ne mobile electrons in the metal
can be thought of as contributing 1/ Ne of their electron charge density in each
unit cell of the lattice. Thus each cell of the lattice has, on average, Z units of
electron charge and together with the ion core, retains charge neutrality.
However, as the lattice constant increases to some unrealistically large value
(say 1 meter), it is clear that the “lattice” is no longer a metal, but rather a
collection of isolated atoms. At some point, each extended electron wave must
have collapsed into one of the atoms.

Moreover, this transition should be rather abrupt as charge neutrality
requires that either all or none of the electrons become localized. To see this,
consider if only one electron became localized to a cell. This cell would still
contain (Ne� 1)/ Ne contributions of electron density from the remaining
extended state electrons, and would essentially contain Z þ 1 electrons. The
strong Coulombic repulsion generated by the close proximity of these elec-
trons would be energetically unfavorable and so the localized electron would
be prompted back into an extended state. Only when all the extended states
collapse into localized states (one in each cell) would a favorable lowering of
energy appear.

13.3 Band structure

We have learned much about the nature of energy bands and gaps in crystals
from our study of the Kronig–Penney model. However, real crystals are far
more complicated and the lattice potential, while still periodic, is shaped much
by the specific crystal structure and contents of the unit cell. Moreover, real
crystals are three-dimensional and the electrons within must be referred to a
corresponding 3D K-space replete with a 3D Brillouin zone. The first Brillouin
zone is formed by the Wigner–Seitz unit cell of reciprocal space, and typically
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assumes the shape of a polyhedron for both the FCC and BCC lattices. For the
simple cubic lattice, the first Brillouin zone is simply a cube.

In spite of all this inherent complexity, we can still draw some general
conclusions regarding the band structure (i.e. the form of E(K)) of real crystals:

(1) E(K) resembles that of the free electron model. Since the lattice potential
is assumed to be sufficiently weak as to allow the electron to exist in
extended (traveling) states, the overall shape of E(K) should mimic that of
a free electron, namely EðKÞ � �h2K2

2m . This is illustrated in Fig. 13.6.
(2) Energy gaps appear near the Brillouin zone boundaries. The primary

exception to the free electron energy spectrum of item (1) above, occurs
near the boundary of any of the Brillouin zones. Here, the electron wave
undergoes multiple Bragg scattering to form a standing wave pattern and
an energy gap that is roughly centered about the average energy (i.e. that
associated with a free electron whose K matches a BZ edge).

(3) dE=dK!0 near a Brillouin zone boundary. Because the Brillouin zone
boundary corresponds to a standing wave pattern of the electron state, it
follows that the group velocity of the electron must approach zero at the
boundary. Since ug ¼ do

dK ¼ 1
�h
dE
dK , this implies that E(K) must curve flat as it

either approaches or recedes from the Brillouin zone boundary.
(4) Curvature of E(K) defines the electron’s effective mass. Although the

effect of an applied force on an electron as represented in K-space still
results in a steady advance of the electron from one dot to the next in
accordance with Eq. (12.36), the real space acceleration of the electron is
given as,

a ¼ dug
dt

¼ dug
dK

dK

dt
¼ 1

�h

d2E

dK2

Fext

�h
¼ Fext

m
 ; ð13:24Þ
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Figure 13.6 Characteristic features of a typical energy band and its density of states.
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where in comparison with Newton’s second law, we introduce the notion
of an effective mass,

m
 ¼ 1

�h2
d2E

dK2


 ��1

; ð13:25Þ

whose magnitude depends on the curvature of the energy band.
(5) E(K) is quadratic near the Brillouin zone boundary. Near a Brillouin

zone boundary, the electron energy deviates from that of a free electron
because of the increasing propensity for scattering to occur. On the bottom
of an energy band, for example, we might express this departure in a series
expansion,

EðKÞ � EB þ AðK � KBÞ þ BðK � KBÞ2 þ � � � ; ð13:26Þ

where the linear term must vanish if item (3) above is to be satisfied. Thus,
to leading order, the energy band near a gap is quadratic. At the bottom of
the band, the energy has positive curvature and thus a positive effective
mass. Here the energy band is described as,

EðKÞ � EB þ
�h2

2m

B

ðK � KBÞ2 þ � � � : ð13:27Þ

At the top of the band, the curvature is negative and the effective mass is
negative. In a similar fashion the band energy near the top of the band can
be described as,

EðKÞ � ET � �h2

2 m

T

�

�

�

�

ðKT � KÞ2 þ � � � : ð13:28Þ

(6) The density of states, g(E), varies as
ffiffiffiffi

E
p

near the Brillouin zone

boundary. In the free electron model, electron energy was not afflicted
by the Brillouin zones. In that situation, the Fermi surface assumed the
shape of a sphere centered about K ¼ 0, and the density of electron states
(as a function of the electron energy) would be given as,

dN ¼ gðKÞdK ¼ 2� V

8p3

� �

4pK2dK ¼ V

2p2

� �

2m

�h2

� �3=2

E1=2dE:

ð13:29Þ

In real crystals, however, the Brillouin zones do affect the electron by
creating gaps of energy where the density of states must vanish.

Imagine then a simple cubic lattice whose valence electrons were taken out
and are now being gradually returned. As the electrons are returned, they stack
into the lowest energy levels (two per level) and our Fermi surface initially
proceeds outwards from K ¼ 0 in the shape of a sphere. In this range of
K-space the density of states is given as that of Eq. (13.29) (except that m is
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replaced by m*) and increases as the square root of the energy difference from
the bottom of the band.

However, as we add more electrons the Fermi sphere will first begin to
contact the Brillouin zone boundary near the six walls of the cube which form
the first Brillouin zone (see Fig. 13.7b). Since we know that the slope of E(K)
flattens near these walls, the number of dots in K-space that have similar
electron energy (to within dE) will be enhanced here and the density of states,
g(E), will exhibit some corresponding discontinuity as a result.

For the simple cubic example, the highest energy states are those near the
eight corners of the Brillouin zone cube (where Kxj j ¼ Ky

�

�

�

� ¼ Kzj j ¼ p=d).
Consequently, as we continue to add electrons these corners are the last dots of
K-space to become occupied. Here the Fermi surface again assumes the form
of a sphere, albeit inverted, 1/8th of which is located at each of the eight
corners of the Brillouin zone. Here again, one can show (Ex. 2) that on
approaching the top of the energy band at ET, the density of states vanishes
as the square root of the energy difference,

dN ¼ gðEÞdE ¼ V

2p2

� �

2m

�h2

� �3=2

ET � Eð Þ1=2dE: ð13:30Þ

In between these extremes, the energy contour is very sensitive to the
specific shape of the (3D) Brillouin zone. The contours deviate considerably

g(E)

K

g(E)

K

g(E)

K

(a) (c)(b)

Figure 13.7 Filling the electron states of a real crystal. Top panel shows how electrons fill K-space within the

confines of the Brillouin zone. (a) Initial addition of electrons reside near the bottom of a band

and produce a spherical Fermi surface. (b) As electrons continue to fill the band, electron states near

the Brillouin zone boundary are filled and the Fermi surface is distorted by the specific shape of

the Brillouin zone. (c) Near the top of the band, vacant states vanish again in the form of a spherical

surface. Lower panels display the corresponding density of states.
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from the spherical shape found at either extreme as they attempt to conform to
the non-spherical shape of the zone boundary. This and other quirks of real
crystal lattices often give rise to discontinuities (so-called van Hove
discontinuities) in the density of states, as illustrated in Fig. 13.7.

13.4 Conductors, insulators, and semiconductors

One puzzle regards the diversity of conduction properties of metals. Some are
highly conductive, others not very conductive at all. Still others display
conductivity only at elevated temperatures. We can now offer a plausible
explanation for these differences in terms of the energy band structure that
arises as a result of the periodic potential. Firstly, we must recognize that the
number of allowed modes in each energy band just equals the number of unit
cells (N3) that make up the lattice. The truth of this statement can be seen by
simply counting all the modes given by Eq. (12.29) for each successive
Brillouin zone: the first zone extending from K¼ 0 to � p=d, the second
extending from K ¼ � p=d to � 2p=d, etc. In each zone, there are N/2 modes
in the positive direction and N/2 in the negative direction and thus N3 total
modes per band. Since each single mode accommodates only two electrons (of
opposing spin), each band is limited to 2N3 total electrons.

Consider now a band that is half filled with electrons. This would be the
situation of a monovalent crystal (Z ¼ 1) and is illustrated in Fig. 13.8. When

g(E)K g(E)K

EF
EF

E

dK

dt

(a) (b)

Figure 13.8 A conductor. (a) The valence band of a conductor is only half filled with electrons, leaving a

large number of unoccupied modes available just above the Fermi level (top of the shaded region).

(b) Under the influence of an electric field, electrons near the Fermi level are promoted into

these vacant modes to produce a finite current.
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an electric field is applied, the electrons in this level shift to the side opposite to
the field, in accordance with Eq. (12.36), and create an unbalanced momentum
which appears as a current. At some point, this shift is offset by collisions with
impurities and lattice defects which provide for a finite mean free path, and the
material conducts in accordance with Ohm’s law. But, compare this with a
band that is completely filled (see Fig. 13.9) as would be the case of a divalent
crystal. When the electric field is applied, the electrons are unable to produce
an imbalance of momentum without some of the electrons shifting into another
energy band of higher energy (referred to as the conduction band). If the
energy gap to this upper band is too large, this will not occur and the material
responds to the applied field as an insulator.

In some alkaline earth metals (e.g. Ca and Mg), the presence of 2N3 electrons
does not lead to insulating behavior. In these instances, there occurs an overlap
of neighboring energy bands as a result of the specific crystalline structure. As
illustrated in Fig. 13.10, the overlap allows for vacancies in the valence band and
a small population of mobile electrons in the conduction band.

Alternatively, if the band structure is such that the energy gap between the
lower band (referred to as the valence band) and next upper band is small, and
sufficient thermal energy is available to produce a finite population of electron
states in the conduction band, then a material with a filled valence band can
respond like a conductor (a semiconductor). The electrons promoted to the
conduction band are free to shift when an external field is applied. Likewise,
the electrons in the valence band are also able to shift owing to a finite number
of vacancies left behind by those electrons that entered the conduction band.

g(E)K g(E)K

EF EF

E

dK 
dt

Bragg

(a) (b)

Fig. 13.9 An insulator. (a) In an insulator, the valence band is completely filled with electrons and the Fermi

level is situated near the center of the energy gap. (b) Although an applied field may sweep

electrons around the band, all states remain occupied with a net K ¼ 0, and no current results.
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This then allows for the required imbalance of electron momentum (see
Fig. 13.11) needed to create a net electrical current.

13.4.1 Holes

Quite often in a semiconductor, only a small fraction of the valence band
electrons are thermally populated in the conduction band and thus only an
equivalently small fraction of vacant modes exist in the valence band. In these

g(E)

EF

K [100][111]

Figure 13.10 In some divalent crystals, conduction results from an overlap of neighboring energy bands.

g(E)K

E

g(E)K

dK 

dt

(a) (b)

EF EF

Figure 13.11 A semiconductor. (a) In a semiconductor the narrowness of the energy gap allows some levels

of the conduction band to be occupied by electrons at finite temperatures. (b) This frees up modes in

the valence band allowing conduction to occur under application of an electric field.
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instances, it is often more practical to discuss the motion of these vacancies as
the motion of quasi-particles in the valence band, rather than the collective
motion of all of the remaining electrons. These so-called holes act in the
presence of an electric field as though they had a positive charge þe and,
depending on the detailed shape of the band structure, can dominate the overall
conductivity to produce positive Hall coefficients.

Holes also play a significant role in the photonic properties of semiconductors.
Consider the simple band structure shown in Fig. 13.12a in which a single electron
has been excited into the conduction band by absorption of a photon. In being
excited, the electron leaves behind a vacancy in the valance band at Ke which
corresponds to a hole with wave vectorKh¼�Ke. Thus the photon is responsible
for the creation of two conducting charges, an electron–hole pair, both of which
contribute to the conductivity under the application of an electric field. This direct
photon transition is contrasted with the indirect transition that appears in more
complex band structures, illustrated in Fig. 13.12b. Here, the creation of an
electron–hole pair can occur by the absorption of a photon, together with the
creation of a phonon. Phonon energies are characteristically small compared with
the gap energy, andmostly provide the required momentum conservation since the
momentum of a photon is characteristically small compared with that of a phonon.

13.4.2 Intrinsic semiconductors

Given the widespread popularity and variety of semiconductor-based devices
found today in all sorts of solid state electronics, it is fitting to examine the

K

Direct Transition

photon

(a)

K

Indirect Transition

photon

phonon

(b)

Figure 13.12 (a) In a direct bandgap transition, an incident photon excites an electron across the energy gap

without altering its momentum. (b) In an indirect transition, excitation of the electron across a

staggered energy gap is assisted by the production or annihilation of a phonon, whose main purpose

is to appropriately alter the momentum of the electron.
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properties of semiconductors in greater detail. We begin by looking at
so-called intrinsic semiconductors (e.g. Si or Ge) in which very little of
any impurity is present. In these intrinsic semiconductors, the small energy
gap (Eg � 1 eV) permits a small concentration, n, of electrons to be thermally
excited into the conduction band, as illustrated in Fig. 13.11a. Since these
electrons are excited from a filled valence band, their absence results in the
formation of an equal number of holes in the valence band and a hole
concentration, p.

In contrast to a normal metal, whose resistivity increases with increasing
temperature due to increased occurrence of scattering of the electrons by
phonons, the resistivity of an intrinsic semiconductor actually decreases quite
strongly with increasing temperature. In the case of the semiconductor, the
reduction of conductivity due to phonon scattering is completely offset by the
increase due to increased numbers of mobile charge carriers, achieved by
raising the temperature. We can thus determine the temperature dependence
of the conductivity of an intrinsic semiconductor by determining how the
concentrations of both conduction electrons and holes increase with increasing
temperature.

The number of electrons in the conduction band is given as,

N ¼
ð

ET

EC

PFDðEÞgðEÞdE ¼
ð

ET

EC

1

exp ðE � EFÞ=kBT½ � þ 1

� �

gðEÞdE; ð13:31Þ

where EC is the lower edge of the conduction band. Since PFDðEÞ decreases
very rapidly above EF at any meaningful temperatures, we can (1) replace the
density of states by its quadratic form valid near the bottom of a band, and (2)
extend the upper limit of integration to infinity. Furthermore, for a typical
intrinsic semiconductor whose energy gap is around 1 eV, the exponential in
the denominator of PFDðEÞ is large compared to unity, and we can rewrite Eq.
(13.31) as,

N ¼ V

2p2

� �

2m

C

�h2

� �3=2 ð

1

EC

E � ECð Þ1=2 exp �ðE � EFÞ=kBT½ �dE;

or,

n ¼ N=V ¼ 2
m


CkBT

2p�h2

� �3=2

exp ðEF � ECÞ=kBT½ �: ð13:32Þ

A similar derivation can be performed for the number density of holes, p, in the
valence band whose occupancy is given as 1 – PFDðEÞ. This yields,

p ¼ 2
m


V kBT

2p�h2

� �3=2

exp ðEV � EFÞ=kBT½ �; ð13:33Þ
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where EV is the upper edge of the valence band. The product of both concen-
trations can thus be expressed in terms of only the energy gap as,

np ¼ 4
kBT

2p�h2

� �3

m

Vm



C

� �3=2
exp �Eg=kBT

� �

: ð13:34Þ

The temperature dependence arising from the exponential dominates over that
from the prefactor and we observe that for an intrinsic semiconductor, the
conductivity exhibits an Arrhenius dependence. An example of this for Si is
shown in Fig. 13.13, where the slope equals half the band gap energy.

13.4.3 Extrinsic semiconductors

Because of their simple design, the intrinsic semiconductors discussed above
always maintain equal populations of both conduction electrons and holes.
However, in many semiconductor applications it is beneficial to alter this
distribution, so as to make a semiconductor material with a majority of one
type of carrier or the other. In practice, this is achieved by doping a small
amount of impurity into the semiconductor and this produces what is known as
an extrinsic semiconductor. Extrinsic semiconductors come in two varieties
depending on whether electrons or holes are the majority carrier. The n-type
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Figure 13.13 Intrinsic conductivity of Si plotted against inverse temperature (adapted from Moran and

Maita (1954)).
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extrinsic semiconductors have an excess of electrons in the conduction band,
while p-type semiconductors have an excess of holes in the valence band.

A common example of an n-type material is that resulting from the addition
of arsenic to silicon, as illustrated in Fig. 13.14a. Since Si resides in the fourth
column of the periodic table and As resides in the fifth column, As substitutes
for Si in the crystal lattice with a leftover electron not participating in the
covalent bond formation. This leftover electron remains tethered loosely to the
As site, whose presence in the lattice appears as a net charge of þ1e. The state
is often referred to as a donor state because the electron is loosely bound and
can be easily donated to the conduction band.

A common example of a p-type material is that resulting when boron is
doped into Si, as illustrated in Fig. 13.14b. Residing in the third column of the
periodic table, B is just shy of the four electrons it needs to covalently bond
with four adjacent Si atoms. Although the B enters the network, its net charge
is �1e and the missing electron behaves identically as a hole that is again,
loosely tethered to the B site. The state is often referred to as an acceptor state,
because the hole can readily be moved into the valence band when the site
accepts a valence band electron.

Clearly the excess electron in the n-type material is not quite in the conduc-
tion band because it remains tethered. Likewise, the hole is not quite in the
valence band. How loosely are these charge carriers tethered to their sites and
where should their states be located in an energy level diagram? To answer
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Si Si Si Si Si Si Si

Si Si Si Si Si Si

Si Si Si Si Si Si Si

Si Si Si Si Si Si Si
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Figure 13.14 (a) An n-type semiconductor formed by doping arsenic (As) into silicon. The excess electron is loosely

bound to the As impurity and occupies energy levels just below the conduction band. (b) A p-type

semiconductor formed by doping boron (B) into silicon. The missing electron equates to an excess hole

that is loosely bound to the B impurity and occupies energy levels just above the valence band.
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this, we picture both situations as mimicking the features of a hydrogen atom,
in that the charge carrier is orbiting the site as a result of the Coulombic
attraction. In the Bohr model of the hydrogen atom, the ground state energy is

E1 ¼
moe

4

2ð4peoÞ2�h2
¼ 13:6 eV; ð13:35Þ

and the orbital radius is the Bohr radius,

r1 ¼ ao ¼
4peo�h

2

moe2
¼ 0:53A

�
: ð13:36Þ

In applying this to our orbiting charge carriers, we need to make two correc-
tions. Firstly, the mass of the carrier is to be replaced by the corresponding
effective mass, m*. This effective mass is typically about one-tenth the elec-
tron mass, mo. Secondly, the orbiting motion occurs not in free space, but
within a material with a dielectric permittivity, e ¼ ereo � 10eo, that is, about
10 times larger. Making these corrections we find that the charge carriers are
tethered to their sites with a binding energy,

E1 ¼
1

e2r

m


mo

� 13:6 eV � 0:01 eV; ð13:37Þ

and orbit about the site at a distance of roughly

r1 ¼ er
mo

m
 � 0:53A
� � 50A

�
: ð13:38Þ

Since this binding energy is much smaller than the gap energy (recall, Eg �
1 eV), the donor states are located just below the conduction band, while the
acceptor states are located just above the valence band. Even at modest
temperatures, almost all of the donor electrons are excited into the conduction
band and almost all of the acceptor sites are occupied by electrons, leaving an
equal number of holes in the valence band.

The pn-junction

The most important application of extrinsic semiconductors undoubtedly stems
from the combination of an n-type semiconductor with a p-type in the forma-
tion of a pn-junction. As illustrated in Fig. 13.15, the junction is formed by
joining these two materials in a manner such that the crystalline lattice is
preserved across the junction. The practical significance of the pn-junction is
its ability to operate as a rectifier or diode: passing current only in one direction
and not the other.

To see how this rectifying property arises, let us consider what would
happen if we “glued” a section of n-type material to a section of p-type
material. At the contact point, electrons would rapidly flood into the p-type
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material, filling and thus annihilating the holes of the acceptor states just inside
the junction. As a result, the region just near the contact point ceases to be
electrically neutral. On the n-type side, the impurities are relieved of their
excess electron and leave this region with a net positive charge. On the p-type
side, the impurities have gained their missing electron needed for completing
the covalent bond requirements and exhibit a net negative charge. After the
two materials are joined, a potential difference quickly develops across the
contact region which stems the flow of further electrons from the n-type to
p-type material. The junction reaches a steady-state configuration, with poten-
tial difference Vo.

After this steady-state situation has been achieved, our pn-junction
exists with a potential drop present across the junction region, as illus-
trated in Fig. 13.15. For the energy bands, which indicate the energy of an
electron, this potential serves to raise the energy band diagram on the
p-type side relative to that on the n-type side. An electron attempting to
cross the junction (in the conduction band) from the n-type side to the
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Figure 13.15 A pn-junction. Joining n-type and p-type materials results in a depletion region emptied of

extrinsic charge carriers. An internal electrostatic potential develops in the depletion region, that

restricts the flow of electrons from n-type to p-type. A steady-state potential Vo is maintained by

balanced flows of electrons across the depletion region.
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p-type side must surmount an energy barrier of eVo. At equilibrium, a flow
of electrons from n-type to p-type (Jnp) is balanced by an opposing flow
from p-type to n-type (Jpn). Since the flow from n-type to p-type is limited
by the energy barrier, its equilibrium contribution to the net current is of
the order,

Jnp;eq / e�eVo=kBT � Jpn;eq: ð13:39Þ

The flow of electrons in the other direction is not at all restricted by the
barrier. A conduction electron that appears on the p-type side near the junction
will readily roll down the energy hill. Here the flow is only limited by the
repopulation of the conduction band in the p-type material, through thermal
production of electron–hole pairs.

To now see how the pn-junction functions as a rectifier, we consider the
effect of applying either a forward or reverse bias to the device. By forward
bias, we mean that a battery is applied such that the p-type material is biased
more positive than the n-type (see Fig. 13.16a). In the case of forward biasing,
we see that the bias potential of the battery, V, serves to reduce the energy
barrier height across the depletion region. As a result, the current of electrons
from the n-type side is increased to

Jnp / e�eðVo�V Þ=kBT ; ð13:40Þ
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Figure 13.16 (a) Under a forward bias, the internal barrier of a pn-junction is reduced, allowing an increased

flow of electrons from the n-type to the p-type material. (b) Under a reverse bias, the internal

barrier of a pn-junction is increased causing a decrease of electrons flowing from the n-type

to p-type material. In this instance, a small flow of electrons from p-type to n-type dominates.
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while the counter flow of electrons from the p-type side remains unchanged.
A net flow of electrons develops from the n-type to the p-type producing a
conventional current,

IF ¼ Io eeV=kBT � 1
� �

; ð13:41Þ

directed oppositely (i.e. from p-type to n-type). So as the forward bias
increases, the forward current increases exponentially.

In the instance of a reverse bias, the electron energy barrier is increased by
the applied voltage, and the flow of electrons from n-type to p-type is reduced
below that of its equilibrium value. In this instance a net current,

IR ¼ Io 1� e�eV=kBT
� �

; ð13:42Þ

flows in the direction from n-type to p-type.
Although our discussion above has focused only on the electron currents, an

identical, but inverted set of statements can be derived regarding the flow of
holes. Taken together, the current–voltage curve for the pn-junction, shown in
Fig. 13.17a, demonstrates its rectifying property.

Photovoltaic cells

As one last example of the practical applications of the pn-junction in
semiconductor devices, consider what happens when the depletion region
of a pn-junction is exposed to a large flux of photons. If the photon energy is
sufficient to generate large numbers of electron–hole pairs, electrons

IF  ≈ IoeeV/k
B
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IR  ≈ Io
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Figure 13.17 (a) The IV characteristic curve for an ideal pn-junction illustrating its rectification property. (b) The

IV characteristic curve for a photovoltaic cell under fixed illumination with changing load

impedance. Maximum power is realized when operated near the knee of this curve.
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appearing in the conduction band of the p-type materials will be rapidly
swept (downhill) across the depletion region into the n-type side, while holes,
appearing in the valence band of the n-type, will be rapidly swept to the
p-type side.

When this pn-junction is open circuited (not connect to any external
circuit), this pumping of charges by virtue of electron–hole pair production
creates a forward bias of the junction which in turn lowers the junction
barrier by an amount VOC. In a steady-state condition, the forward bias
current (Eq. (13.41)) is balanced by the current arising from pair production,
such that,

IoðeeVoc=kBT � 1Þ ¼ ISC ; ð13:43Þ

where ISC represents the current (flowing from n-type to p-type because of
electrons traveling oppositely) produced by the photoexcitation of carriers and
is proportional to the photon flux. At steady state, the bias potential across the
junction appearing in an open circuit configuration is then

Voc ¼
kBT

e
ln

ISC þ Io

Io

� �

: ð13:44Þ

Using a high load impedance, changes in this voltage can be measured in
response to changes in the photon flux, and the junction then performs as a
photodetector.

In the short circuit configuration, the current ISC is merely pumped around a
circuit without any potential difference. The complete IV curve of a photovol-
taic cell generated by a varying load impedance is shown in Fig. 13.17b, and
suggests that the maximum electric power that could be realized by this cell is
roughly the product of the short circuited current (ISC) and the open circuited
voltage (VOC).

13.5 Amorphous metals: the Anderson transition

In disordered materials, irregularities in the electron potential spawn wave
localization effects, much like those seen for phonons discussed in Chapter 11.
However, unlike phonon localization, which was controlled by a characteristic
length scale, electron localization stems from a degree of variability in the
height of the periodic “bumps” in the potential, as illustrated in Fig. 13.18, that
result from disordering. For the crystal, the electron potential is periodic and
each local potential well is equivalent. Together, this periodic potential gives
rise to a band of allowed energies encompassing an energy interval
DE ¼ ET � EB. By comparison, the electron potential of a severely disordered
material has a wide variety of local potential wells, described by a distribution
with a characteristic energy range W.
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On theoretical grounds, Anderson (1958) demonstrated that when the dis-
order parameter, roughly W=DE, exceeds unity, all the electron states in the
valence band become localized. These localized electron states are no longer
described by propagating (Bloch) wave functions, but rather by wave functions
of the form,

cð~rÞ / e�~r�~roj j; ð13:45Þ

in which the electron density vanishes except in the region near~r �~ro. Thus, a
sufficiently disordered conducting metal can be transformed into an insulator
via the Anderson transition.

However, even modest amounts of disorder, for whichW=DE < 1, can have
pronounced effects on the energy level structure. For real crystals, the density
of states often exhibits irregular maxima, so-called van Hove discontinuities,
which result from peculiarities of the crystal structure. In a glass, these irregu-
larities are not only smoothed over, but the density of states can even extend
into the, previously forbidden, energy gap region, as illustrated in Fig. 13.19.
Although states form within the gap, these states are localized and are sharply
divided from the remaining, extended states, by a mobility edge. Electrons
excited above the mobility edge of the conduction band (and holes formed
below the edge in the valence band) are mobile and able to contribute to
conduction.

+ + + + + + +

E∆

(a)

+ + + + + + +

W

(b)

Figure 13.18 The periodic potential of a crystal gives rise to a band of allowed electron energy states of

width DE. In a glass, disorder introduces variations in the potential characterized by an energy

spread W. In cases of extreme disorder, the spread in energy exceeds the corresponding crystalline

bandwidth to produce localization of the electron states.
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Summary

c When effects of a periodic potential are included, the free electron
wave function is replaced by a Bloch wave function that is modulated
with the periodicity of the lattice.

c Solutions of Schrödinger’s equation in the case of a periodic potential
give rise to energy bands and energy gaps. Each allowed band can
accommodate only 2N3 total electrons. As a consequence, monovalent
metals tend to exhibit high conductivity, while divalent crystals often
behave as poor conductors or insulators.

c Instances of a positive Hall coefficient indicate the dominance of holes
in the overall conduction.

c Extrinsic semiconductors are those doped with impurities to provide a
supply of excess charge carriers.

c The pn-junction is a fundamental element in modern solid state elec-
tronics that functions both as a rectifier and as a photocell.
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Figure 13.19 (a) The density of states for a crystal exhibits van Hove discontinuities and vanishes within the

energy gap. (b) The introduction of moderate amounts of disorder leads to a reduction of the van

Hove discontinuities and the formation of some localized electron states just inside the energy

gap. (c) In the case of increased disorder, localized states can fill the entire gap.
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Exercises

13.1. Obtain the dispersion relation of the Kronig–Penney model given in
Eq. (13.17) by solving the four simultaneous equations in Eq. (13.16).
(Caution: this exercise is straightforward but contains a tedious amount
of algebra.)

13.2. Show that near the top of an energy band the density of states, g(E)dE is
given as in Eq. (13.30).

13.3. Estimate the energy (�ho) and momentum (�hK) for (a) a typical acoustic
phonon near the Brillouin edge, and (b) a typical photon capable of
exciting across the bandgap of Si. In so doing, verify that in an indirect
bandgap transition, the momentum is chiefly supplied by the phonon,
and the energy by the photon.

13.4. Determine the energy gap of Si using the data provided in Fig. 13.13.
Express your answer in electron volts and compare with literature
sources.

13.5. Discuss the operation of a light-emitting diode or LED in light of what
we discussed regarding the operation of a photovoltaic cell.

13.6. Show that, for a simple cubic lattice, the kinetic energy of a free electron
at the corner of the first Brillouin zone (111) is higher than that of an
electron at the midpoint of a side face of the zone (100), by a factor of 3.
Discuss what significance this result might have for the conductivity of
divalent metals.

13.7. Show how Eq. (13.18) arises from Eq. (13.17) as the width of the
barriers in the Kronig–Penney model is decreased.

13.8. (a) For the Kronig–Penney model with P <<1, show that, at K ¼ 0 the

energy of the lowest energy band is approximately Eo � P �h2

md2
.

(b) Likewise, find the first band gap at K ¼ p=d, and show that it is
approximately 2Eo. (Hint: in this situation, the first term on the left-hand
side of Eq. (13.18) is a minor contribution to the second term, and so
Taylor expansions about the K in question are warranted.)

13.9. Imagine a 1D crystal with an energy band described by
EðKÞ ¼ EB þ ðET � EBÞsin2ðKd=2Þ that contains only a single electron.
(a) Determine how the effective mass and group velocity depend on K

and sketch a graph of this dependence. (b) Based on the results of the
previous part, describe how the location of the electron (in real space)
would evolve in time under the influence of a steady electric field.
Assume there are no sources for scattering other than Bragg reflections
occurring whenever the electron encounters the Brillouin zone edge.
(c) If the lattice spacing is 2 Å and the field strength is 200 N/C, what is
the period of oscillation?

244 Electrons: band theory



Suggested reading

A nice introduction to both the Mott transition and the Anderson transition can be

found in the book by Zallen.

C. Kittel, Introduction to Solid State Physics, 8th Ed. (John Wiley and Sons, 2005).

N.W. Ashcroft and N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston,

New York, 1976).

J. S. Blakemore, Solid State Physics, 2nd Ed. (W. B. Saunders Co., Philadelphia, 1974).

R. Zallen, The Physics of Amorphous Materials (John Wiley and Sons, New York,

1983).

245 Suggested reading



14 Bulk dynamics and response

Introduction

Up to now, we have considered only those inherent microscopic dynamics in a

material that are present at equilibrium and are driven by the thermal energy

content of the material itself. Here, in our last chapter dealing with dynamics,

we consider instead the macroscopic, bulk dynamics of materials in non-

equilibrium situations where an external force is applied or removed.

Examples include the stretching or bending of a solid that results from

application of a mechanical force, or the polarization of a dielectric material

resulting when an external electric field is applied.

Several common features emerge in the response of a material to an external

force or field. In all cases, there is some aspect of elasticity by which applica-

tion of the force results in the storage of potential energy, that is returned when

the force is removed. In all cases, this storage of energy is accompanied by

some element of viscous drag or damping by which a portion of the work done

during the deformation is lost in the form of heat. Like friction, this damping is

a microscopic feature inherent in the thermodynamic fluctuations, and the

energy lost during the deformation is returned to the same thermal bath from

which it was derived. In fact, we will show that an important theorem exists,

known as the fluctuation–dissipation theorem, which relates the macroscopic

dissipation of energy in these bulk, non-equilibrium, processes directly to the

inherent microscopic fluctuations present at equilibrium.

14.1 Fields and deformations

What happens when you bend a pencil? Obviously, if you bend it too force-

fully it will break. But if you bend it only slightly, it will return to its original

state after you release it. This behavior is much like that of an ideal spring. For

small displacements of the spring, the force is proportional to the degree of

stretching. However, if we stretch the spring too far, certain permanent deform-

ations result which will disrupt the proportionality. Throughout this chapter,

we will be considering how materials respond to applied forces or fields in
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what is known as the linear response regime. This is merely the range of small

deformations of a specimen that remains proportional to the force.

14.1.1 Mechanical deformations

We begin with the simple example of bulk deformations associated with the

application of a mechanical force, such as occurs when a block of material is

subjected to a shearing force. If a force is applied tangentially to the top of the

block whose surface area is A, it produces a shear stress s ¼ F=A. As a result

of this shear stress, the material undergoes a lateral deformation, as illustrated

in Fig. 14.1, which is characterized by a shear strain g ¼ Dx=L, where L is the

height of the block.

There are two extremes of how the strain will respond to the applied stress,

depending on the nature of the material. Firstly, if the material is an elastic

solid, we anticipate that it will stretch to some equilibrium strain and, when the

stress is removed, it will return to where it started. A material exhibiting such

ideal behavior is known as a Hookian solid, as it obeys Hooke’s law for ideal

springs. Alternatively, if the material is a liquid, we anticipate that it will flow

under the application of the shear stress and will not return to its original state

when the stress is removed. A material exhibiting such ideal behavior is known

as a Newtonian fluid.

For an ideal Hookian solid, under sufficiently small loads, the limiting strain

produced is proportional to the applied stress and the ratio is described

L

s = F/A

s = F/A

Hookian Solid

∆x

G

Newtonian Fluid

d g

dt

ο

η

s

s

g οg

g

Figure 14.1 Ideal response of a Hookian solid and a Newtonian fluid. Under an applied stress, the solid

behaves like an ideal spring and experiences a nearly instantaneous strain that vanishes when

the stress is removed. The liquid behaves like an ideal dashpot, whose strain rate is proportional to

the applied stress.
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alternatively by a shear modulus, G, or its inverse known as a shear compli-

ance, J, as,

s ¼ Gg or g ¼ Js: ð14:1Þ

In the absence of any damping, the applied stress produces a nearly instantan-

eous deformation of fixed magnitude (see Fig. 14.1) and the work performed is

stored in the form of elastic potential energy. If we were to suddenly release the

stress, the material would oscillate at some fundamental frequency indefinitely.

As indicated in Fig. 14.1, we could represent this elastic response as similar to

that of an ideal spring with a spring constant proportional to G.

For an ideal Newtonian liquid, application of the shear results in a continu-

ous motion of the upper surface of the material relative to the lower surface. As

the uppermost layer of fluid is pulled by the shearing force, it experiences a

viscous drag due to contact with the layer of fluid immediately below.

A steady-state flow is attained such that the applied shear is balanced by a

drag force proportional to the rate of strain,

s ¼ Z
dg

dt
; ð14:2Þ

where Z is the shear viscosity. Because the rate of strain is fixed for a fixed

load, the deformation of a Newtonian liquid increases continuously (see

Fig. 14.1) and is not recovered when the stress is later removed. No potential

energy is stored during the deformation and the work performed is completely

lost in the form of energy dissipated into heat. As suggested in Fig. 14.1, we

could represent this viscous response as similar to that of an ideal dashpot with

a damping force proportional to Z.

Viscoelastic behavior

The response of real materials is neither purely elastic nor purely viscous. A solid

ismostly elastic by virtue of the strong bonds that hold it together. But ifwe stretch

a solid and release it, wewill notfind it oscillating indefinitely. The bonds between

particles in a solid are not perfect springs and in each cycle of the oscillation

damping forces present in thematerial dissipate away the stored energy. Similarly,

although a liquid is primarily viscous, weak bonds between the particles do

provide an element of elasticity. Hence, real materials are generally viscoelastic

and exhibit a mixed response to applied forces that incorporates elements of

elasticity (with energy storage) and viscous flow (with energy dissipation).

A prime example of a viscoelastic material would be the polymers discussed

in Chapter 9. Recall that a polymer-based material consists of a collection of

long polymer chains that are individually coiled up, but also entangled with

other chains. Under stress, we might initially observe the elastic response

associated with the entropic stretching of the individual polymer coils them-

selves. However, over time, the stress will act to uncoil the chains and unravel
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the entanglements and a gradual, fluid-like deformation will result producing a

complicated time-dependent viscoelastic relaxation.

To illustrate the nature of viscoelastic relaxations, let us examine a

simple model consisting of a parallel combination of a Hookian spring and a

Newtonian dashpot shown in Fig. 14.2. The equation of motion for this system

is given by

s ¼ Ggþ Z
dg

dt
: ð14:3Þ

Suppose now a fixed stress, so, is instantly applied and maintained for suffi-

cient time that an equilibrium strain, so ¼ Ggo, is produced. On application of

the stress,

so ¼ Ggþ Z
dg

dt
; ð14:4Þ

whose solution is,

gonðtÞ ¼ go 1� e�t=t
� �

; ð14:5Þ

where the characteristic relaxation time is t ¼ Z=G. In this process, some of

the work performed is stored in the spring while some is dissipated to viscous

forces present in the dashpot.

If we now remove the stress, the equation of motion becomes

Ggþ Z
dg

dt
¼ 0; ð14:6Þ

whose solution is,

goff ðtÞ ¼ goe
�t=t: ð14:7Þ

In this case, the elastic potential energy previously stored in the spring is

completely dissipated.

This model is far too simple to describe the response of most real materials,

but could be extended by adding additional viscous and elastic elements (in

parallel and series) in more complex combinations, to arrive at time depend-

encies that mimic experiment. Instead, we emphasize just two important

aspects of viscoelastic relaxation: (1) the deformation is not instantaneous

but rather described by a time-dependent relaxation function, g(t), and (2)

some energy is always dissipated in the process due to the presence of

microscopic damping forces.

14.1.2 Electric and magnetic deformations

Electric and magnetic fields also produce deformations of a sort. These fields

act to align electric dipoles or magnetic moments present in a material so as to

G

η

s

g

οs

οg

Figure 14.2

A simple model for viscoelastic

relaxation consists of a parallel

combination of a spring and

dashpot. Under an applied

stress, the viscous damping

provided by the dashpot results

in a gradual (time-dependent)

approach to and from a stressed

state of deformation.
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produce a finite polarization or magnetization, respectively. Although there is

no actual (mechanical) deformation occurring in either the dielectric or mag-

netic material, both the polarization and magnetization are the result of an

applied field, and in the linear response regime, are proportional to the

magnitude of the field.

Consider an experiment in which a battery is connected to a parallel-plate

capacitor, as illustrated in Fig. 14.3. This produces an electric field in the space

between the capacitor plates Eo ¼ Vo /d, and an accumulation of charge

qo ¼ eoA=dð ÞVo on the plates, where Vo is the battery voltage, A the area of

the plates and d the spacing. We next insert a dielectric material between the

plates at time t ¼ 0. What happens? Firstly, the material contains atoms

composed of nuclei surrounded by an electron cloud. In the presence of the

electric field, the cloud experiences a force and is displaced from equilibrium

forming an induced electric dipole and net polarization of the material. This

polarization happens rather quickly, but the material may also contain perman-

ent electric dipoles, which, in the electric field, experience a torque and may

reorient against viscous forces in such a way as to gradually become polarized.

In any event, the polarization starts at zero and increases over time to a new

equilibrium value. As it develops, a layer of bound charge, qb, forms at the top

and bottom of the sample creating an interior electric field opposite to that

originally introduced. From electrostatics, the polarization, P, equals this

bound charge surface density. Since the battery is a constant voltage source,

P = 0d
Vo

Vo

qo

Eo

d

qo+ qb

i

P > 0

– –– ––

+ + ++ +

R

C

Figure 14.3 In the upper figure, an unpolarized specimen is about to be inserted (instantaneously) into the

space between the plates of a parallel-plate capacitor. Upon insertion, a bound charge density, �qb,

forms at the top and bottom of the specimen as a result of polarization. To maintain the

original field, a measurable current, i, is fed from the battery. Analogous to that presented for

Figure 14.2, the polarization response can be modeled by a resistor and capacitor in series, whose

characteristic relaxation time equals RC.
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charges are delivered from it to the plates of the capacitor to offset the bound

charge and maintain the original electric field, as shown in Fig. 14.3. When the

material is removed from the electric field, the opposing field present in the

material returns the polarization to a randomized state over time, and the bound

charge vanishes.

In parallel with our discussion of mechanical relaxation, we could model the

electrical relaxation as a combination of things that store energy (i.e. capacitors)

and dissipate energy (i.e. resistors), as illustrated in Fig. 14.3. On application of

the battery, Kirchhoff’s sum rule yields the following equation of motion:

Vo ¼
qb

C
þ R

dqb

dt
; ð14:8Þ

which is exactly analogous with the mechanical analog of Eq. (14.4). In this

instance, the characteristic relaxation time is given by the familiar, t ¼ RC.

Although it would be natural to associate the “electrical deformation” with

either the polarization or the bound surface charge density, it is easiest to

measure the free charge moving to or from the battery, and more customary to

associate the deformation with the displacement field,

DðtÞ ¼ eoEo þ PðtÞ ¼ eoð1þ weðtÞÞEo ¼ eðtÞEo; ð14:9Þ

where eo is the permittivity of free space and we is known as the dielectric

susceptibility.

In the analogous magnetic experiment, a magnetic material is introduced

into the core of a long solenoid and develops a magnetization, M. Again, we

could associate M (or its corresponding bound current density) with the

“magnetic deformation” caused by an applied field Ho. However, it is cus-

tomary to associate the deformation with the magnetic induction, B, for

which,

BðtÞ ¼ moHo þ moMðtÞ ¼ moð1þ wmðtÞÞHo ¼ mðtÞHo; ð14:10Þ

where mo is the permeability of free space and wm is known as the magnetic

susceptibility.

14.1.3 A generalized response

Hopefully by now you will have gleaned that a pattern is emerging in how a

material responds to an applied force or field in the linear response regime. In

each of the above situations of mechanical, electrical and magnetic relaxation,

the application or removal of a generic field, Fo, results in a time-dependent

deformation of the form,

DX ðtÞ ¼ RðtÞFo; ð14:11Þ

where R(t) is a time-dependent response function that describes the relaxation

of the system from one state of equilibrium to another. To complete this
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generalization, the assignment of the variables in Eq. (14.11) for mechanical,

electrical and magnetic relaxations is summarized in Table 14.1.

14.2 Time-dependent fields

Although viscoelastic relaxation can be studied in the time domain using the

sort of step loads illustrated in the examples above, it is far more common to

examine the response in the frequency domain as it appears when a sinusoid-

ally varying field is applied over a range of frequencies. Consider first, an

arbitrary time-dependent field, as illustrated in Fig. 14.4. We can construct this

time dependence with a series of small step loads of size dF, occurring at time

t0, each of which produces a corresponding advance in the deformation at a

later time t, given from Eq. (14.11) as,

d DX ðtÞ½ � ¼ dFðt0ÞRðt � t0Þ: ð14:12Þ

Table 14.1 Deformations, fields, and their corresponding response functions.

Deformation Field Response function

Mechanical g s J(t)

Electrical D E eðtÞ or weðtÞ

Magnetic B H mðtÞ or wmðtÞ

General DX F R(t)

F

D

t

X

dF(t ′)

  t ′  

d [∆X(t - t ′)]

Figure 14.4 For an arbitrary time-dependent field, the resulting time-dependent deformation can be

determined by Boltzmann superposition. The applied field is regarded as a combination of

sequential stepwise changes of an infinitesimal amount dF , occurring at time t0. Each step produces

a corresponding infinitesimal viscoelastic deformation at later times, and the net deformation is

obtained by superposition.
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The cumulative effect of the sequential step loads is the time-dependent field

and so the net resulting deformation is obtained by an integration process

known as Boltzmann superposition,

DX ðtÞ ¼
X

steps

dFðt0ÞRðt � t0Þ ¼

ð

t

�1

dFðt0Þ

dt0
Rðt � t0Þdt0: ð14:13Þ

Integration by parts yields,

DX ðtÞ ¼

ð

t

�1

Fðt0ÞfRðt � t0Þdt0; ð14:14Þ

where

fRðtÞ 	
dRðtÞ

dt
; ð14:15Þ

is known as the pulse response function. The pulse response function is most

fundamental as it describes the deformation following application of a delta

function pulse, Fðt0Þ ¼ Fodðt
0Þ, which in Eq. (14.14) yields,

DX ðtÞ ¼

ð

t

�1

Fodðt
0ÞfRðt � t0Þdt0 ¼ FofRðtÞ: ð14:16Þ

In the case of an exponential relaxation, where either RonðtÞ ¼ Ro 1� e�t=t
� �

or Roff ðtÞ ¼ Roe
�t=t, it is the function fRðtÞ ¼ �Roe

�t=t=t that contains the

fundamental kernel of the relaxation process present, both when loads are

applied and when they are removed.

14.2.1 Alternating fields and response functions

Now let us consider a very common type of experiment in which the time-

dependent field is sinusoidal,

FðtÞ ¼ Foe
�iot; ð14:17Þ

and for which the deformation is now described by a frequency-dependent

response function, R
ðoÞ, such that,

DX ðtÞ ¼ R
ðoÞFðtÞ: ð14:18Þ

Why is R
ðoÞ a complex quantity? Recall that the response to any deformation

is not instantaneous and so we anticipate, as illustrated in Fig. 14.5, that while

the deformation will oscillate at the same frequency of the applied field, it will

most likely be delayed by some phase angle. That is,

R
ðoÞ 	
DX ðtÞ

FðtÞ
¼ R0ðoÞ þ iR00ðoÞf g ¼ R
ðoÞj jeid; ð14:19Þ
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where,

R
ðoÞj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R0ðoÞ½ �2þ R00ðoÞ½ �2
q

and tan d ¼
R00ðoÞ

R0ðoÞ
: ð14:20Þ

From Eq. (14.14), we can now express the response function as,

R
ðoÞ ¼
DX ðtÞ

FðtÞ
¼

ð

t

�1

Foe
�iot0fRðt � t0Þdt0

Foe�iot
¼

ð

t

�1

e�ioðt0�tÞfRðt � t0Þdt0:

ð14:21Þ

Using a change of variables to t00 ¼ t � t0, this can be reduced to,

R
ðoÞ ¼

ð

1

0

fRðt
00Þeþiot00dt00: ð14:22Þ

Equation (14.22) expresses a remarkable result. The frequency-dependent

response function obtained in an ac experiment is simply the one-sided Fourier

transform of the time-dependent pulse response function, which, as we

observed, contains the fundamental kernel of the viscoelastic relaxation.

Because of this Fourier transform relationship, we find that R
ðoÞ obtained

through ac experiments contains the same information about the inherent

dynamics that one would obtain through a static (dc) experiment using fixed

loads.

To develop some understanding of the information afforded by R
ðoÞ, let us

consider again the simple case in which the relaxation is exponential and the

pulse response function is

fRðtÞ ¼ Roe
�t=t=t: ð14:23Þ
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Figure 14.5 Illustration of an alternating applied field and its corresponding deformation, showing both the

differing amplitude and phase.
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In this case, the one-sided Fourier transform yields,

R
ðoÞ ¼
Ro

t

ð

1

0

e�t=teþiotdt ¼
Ro

1� iot
; ð14:24Þ

whose real and imaginary parts are given as,

R0ðoÞ ¼ Ro

1

1þ o2t2

� �

R00ðoÞ ¼ Ro

ot

1þ o2t2

� �

;

ð14:25Þ

and are each plotted in Fig. 14.6.

What can we discern from these two curves? Firstly, R0ðoÞ is a measure of

how large a deformation is achieved throughout the cycle. At high frequencies

where o >> t�1, this deformation is small, because the field is flipping

directions far too quickly for any deformation to keep pace. By comparison,

at low frequencies the field changes slowly enough (o << t�1) that an

equilibrium deformation is maintained in each cycle.

Secondly, R00ðoÞ is seen to exhibit a peaked behavior with the peak coinciding

with o ¼ t�1. The location of the peak thus provides a direct measure of the

characteristic relaxation time scale, and can be monitored as a function of

temperature or composition. As we will demonstrate shortly, R00ðoÞ is a measure

of the energy dissipated in each cycle. At high frequencies, where the field

w (Hz)

R ′(   ) / Ro  ω

R ′′(   ) / Ro  ω

τ = 3.3 ms

100
0

0.2

0.6

0.8

1

0.4

101 102 103 104 105

Figure 14.6 Frequency dependence for the exponential response function of Eq. (14.25) for a relaxation

time of 3.3 milliseconds. Note that the peak in the imaginary component occurs near

o ¼ t�1¼ 300 Hz.

255 14.2 Time-dependent fields



reverses too rapidly to establish much deformation, the dissipated energy is small

and R00ðoÞ begins from zero. At low frequencies, the deformation is carried out so

slowly that the drag forces (and work performed against them) vanish. Again,

R00ðoÞ decreases towards zero in this limit. Only when the field is reversing at a

rate comparable to the relaxation time, is the energy dissipation maximum.

14.2.2 Energy dissipation

To demonstrate the relationship between R00ðoÞ and the energy dissipation per

cycle, we start by recognizing that the instantaneous power is given by the product

of the force and the velocity, or for our generalized fields and deformations as,

Power ¼ Re FðtÞf g
d

dt
Re DX ðtÞf g ¼ Fo cosot

d

dt
Re DX ðtÞf g; ð14:26Þ

where Refg denotes only the real part of a complex quantity. From Eq. (14.18),

Re DX ðtÞf g ¼ Re R
ðoÞFðtÞf g

¼ FoRe R0ðoÞ þ iR00ðoÞð Þ cosot � i sinotð Þf g

¼ Fo R0ðoÞ cosot þ R00ðoÞ sinotð Þ;

ð14:27Þ

and the time derivative is,

d

dt
Re DX ðtÞf g ¼ Foo R00ðoÞ cosot � R0ðoÞ sinotð Þ: ð14:28Þ

Thus, from Eq. (14.26), the instantaneous power is obtained as,

Power ¼ F2
oo R00ðoÞ cos2 ot � R0ðoÞ sinot cosot

� �

: ð14:29Þ

This is plotted in Fig. 14.7 and shows that a portion of the power input during

one quarter cycle is returned in the next. This part is proportional to R0ðoÞ and
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Figure 14.7 Variation of the power stored and dissipated versus time during one cycle of an alternating field.
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is a measure of the energy storage in the form of elastic potential energy.

Another portion of the power input during the cycle is not returned. Averaged

over a cycle, this dissipated energy is,

ð

T¼2p=o

0

Powerð Þ dt ¼ pF2
o R

00ðoÞ: ð14:30Þ

14.3 The fluctuation–dissipation theorem

The energy dissipation in bulk relaxation processes obviously arises from

inherent damping, but what is the microscopic source for this damping?

Consider once more the Brownian motion of a large particle suspended in a

solvent. From our earlier discussion of Brownian motion, we know that the

driving force for the erratic motion of the particle arises from the random

impacts it experiences from molecules of the solvent. These random impacts

are, in turn, generated by the inherent thermodynamic fluctuations present in

any system at equilibrium. But suppose we could apply an external force to our

particle. Imagine, for example, that our Brownian particle is charged and

propelled through the solvent by an external electric field. We know it will

suffer a frictional drag force and, as illustrated in Fig. 14.8, the source of this

drag force is again seen to be a consequence of the impacts produced by the

solvent molecules. Because the Brownian particle moves forward with a finite

Brownian

impacts 

E 

υ

drag force

+Qmacroparticle

Figure 14.8 In the absence of a motive force, a Brownian particle executes a random walk as a result

of random collisions by solvent molecules. However, when the Brownian particle is

pulled through the solvent by an external force, it suffers more devastating impacts on its

front side than on its rear, which mimic the effects of a drag force proportional to the

particle’s velocity.
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speed, those impacts occurring on the forward side involve a greater relative

speed of approach than those on the rear and impart a correspondingly higher

impulse on the Brownian particle.

The upshot of this example is that the random impacts of the solvent

molecules serve two purposes: they are the source of the random driving force

for the Brownian particle, and the source for the systematic frictional drag

when the Brownian particle is displaced by an external field. It is this inherent

connection between the random and systematic aspects of the microscopic

fluctuations that lie at the heart of a very general theorem, known as the

fluctuation–dissipation theorem. There are many various mathematical expres-

sions of this theorem, but the most common is the following relationship:

R00ðoÞ ¼
o

2kT
SX ðoÞ; ð14:31Þ

between the imaginary part of the (macroscopic) response function and the

(microscopic) power spectrum, SX ðoÞ ¼
Ð

1

�1

DX ðtÞDX ð0Þh ieqe
iotdt. This

power spectrum is microscopic because it is merely the Fourier transform of

the correlation function associated with the incessant fluctuations in the

deformation at equilibrium when no external field is present. The significance

of the theorem is that it associates the dynamics occurring for macroscopic

deformations caused by an external field with those thermodynamically driven,

microscopic fluctuations present in thermal equilibrium. Given the importance

of this theorem, we present a short derivation.

Firstly, imagine a thermodynamic system at equilibrium in the absence of

the applied field. In general, it may exhibit a non-zero equilibrium value of the

quantity X that would be obtained by Boltzmann statistics as,

Xh ieq¼

P

i

XiðtÞe
�bEo

i

P

i

e�bEo
i

; ð14:32Þ

where b 	 1=kBT and Eo
i is the corresponding energy associated with micro-

states of XiðtÞ in the absence of the field.

What happens when the field is applied? We know that an applied electric field,
~Eo, promotes the alignment of electric dipoles, resulting in a polarization P and a

lowering of the energy by an amount, DE ¼ �EoP ¼ �FoXið Þ. Likewise, for

magnetic materials, the alignment of magnetic moments results in a net magnetiza-

tion and a lowering of the energy by an amount,DE ¼ �HoM ¼ �FoXið Þ. Thus, it

reasons that when a generic field, Fo, is applied for some long time, a net deform-

ation develops and the energy of each microstate is lowered to

Ei ¼ Eo
i � FoXið0Þ: ð14:33Þ

Suppose that our field has been applied for a long time such that a fixed

deformation has been established. We next imagine turning off the applied
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field at t¼ 0 and monitoring the decay of the quantity X back to its equilibrium

value over time, as shown in Fig. 14.9. The decay of the non-equilibrium

deformation is then given as,

DX ðtÞ ¼

P

i

XiðtÞe
�b Eo

i
�FoXið0Þ½ �

P

i

e�b Eo
i
�FoXið0Þ½ �

� Xh ieq: ð14:34Þ

For the moment, let us suppose that our field is small and produces a tiny

deformation such that Fo Xið0Þ << kBT . In this instance, we can expand the

exponential in Eq. (14.34) to obtain,

DX ðtÞ �

P

i

XiðtÞe
�bEo

i ð1þ bFoXið0ÞÞ

P

i

e�bEo
i ð1þ bFoXið0ÞÞ

� Xh ieq: ð14:35Þ

One can show (Ex. 1) that the denominator is,

1
P

i

e�bEo
i ð1þ bFo Xið0ÞÞ

¼
1� bFo Xh ieq

P

i

e�bEo
i

; ð14:36Þ

so that,

DX ðtÞ �

P

i

XiðtÞe
�bEo

i 1þ bFoXið0Þ � bFo Xh ieq þOðF2
o Þ

h i

P

i

e�bEo
i

� Xh ieq:

ð14:37Þ

X

Fo

t

F

t = 0

Figure 14.9 A deformation initially produced in a system is accompanied by thermodynamic fluctuations.

When the applied field is removed at time t ¼ 0, the macroscopic decay back to equilibrium is

conditioned by these same microscopic fluctuations.
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The first term in the summation is given by Eq. (14.32) as Xh ieq, and so,

DX ðtÞ � bFo X ðtÞX ð0Þh ieq� Xh i2eq

n o

: ð14:38Þ

One can show (Ex. 2) that for an equilibrium fluctuation in the quantity X

given by,

DXeqðtÞ ¼ X ðtÞ � Xh ieq; ð14:39Þ

the macroscopic deformation is,

DX ðtÞ � bFo DX ðtÞDX ð0Þh ieq: ð14:40Þ

Compare this result with that obtained in Eq. (14.11). The earlier expres-

sion was developed to describe the linear response to rather large, but linear,

deformations. But, of course, this expression must also apply equally well for

any tiny deformation, since they too are within the linear regime. It then

reasons that Eq. (14.40) holds for any macroscopic, but linear, deformation

and that

RðtÞ ¼
1

kBT
DX ðtÞDX ð0Þh ieq: ð14:41Þ

This is the essential feature of the fluctuation–dissipation theorem: any exter-

nally imposed perturbation in the linear regime decays in the same fashion as

any spontaneous microscopic fluctuation occurring at equilibrium (in the

absence of the field).

To obtain the version of the fluctuation–dissipation theorem of Eq. (14.31),

we can apply a time derivate to both sides and recognize that dR=dt ¼ �fRðtÞ

in this situation that a field or load is being removed. We then have,

fRðtÞ ¼ �
1

kBT

d

dt
DX ðtÞDX ð0Þh ieq; ð14:42Þ

and next apply a Fourier transform. The term on the left-hand side (see

Eq. (14.22)) becomes the frequency-dependent response function, R
ðoÞ,

obtained in a macroscopic ac experiment, while the right-hand side must be

integrated by parts to arrive at,

R
ðoÞ ¼
1

kBT
DX 2ð0Þ
	 


eq
þ io

ð

1

0

DX ðtÞDX ð0Þh ieqe
iotdt

8

<

:

9

=

;

: ð14:43Þ

The second term on the right-hand side is half the power spectrum, SX ðoÞ,

associated with fluctuations in X(t) that occur in the absence of the external

field, and thus we arrive at the usual statement of the fluctuation–dissipation

theorem, given above in Eq. (14.31).
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Summary

c Bulk dynamics refers to the non-equilibrium response of a material to

an external field.

c The linear response regime implies that the deformation, DX , caused

by an applied field, Fo, is proportional to the field.

c In general, the viscoelastic response of a material is non-instantaneous

and accompanied by dissipation of energy.

c In ac experiments, the response function, R
ðoÞ, is a Fourier transform

of the underlying relaxation, as described by the pulse response func-

tion, fRðtÞ.

c The fluctuation–dissipation theorem relates the energy dissipation in a

bulk relaxation to inherent fluctuations in the corresponding deform-

ation present in the absence of an external field.

Exercises

14.1. Show that the denominator of Eq. (14.35) can be expressed as given in

Eq. (14.36).

14.2. Show that for any fluctuation defined as in Eq. (14.39), the autocorrela-

tion can be expressed as DX ðtÞDX ð0Þh ieq¼ X ðtÞX ð0Þh ieq� Xh i2eq.

14.3. The viscoelastic element shown in Fig. 14.2 is known as a Kelvin

element and is representative of how stresses add together. A corollary

to this is the Maxwell element, formed by a spring and dashpot con-

nected in series, which is representative of how strains add together. For

this situation, the equation of motion is given by,

dg

dt
¼

1

G

ds

dt
þ
s

Z
: ð14:44Þ

(a) Suppose a Maxwell element starts with an overall length xo and is

instantly stretched to xo þ go. Determine the form of sðtÞ which

results. (b) After some very long time, the Maxwell element is now

compressed back to its original length (xo). Determine the form of

sðtÞ which results in this instance.

14.4. Ac dielectric measurements were performed on a polymer liquid at five

temperatures. The frequency dependence of the dielectric loss is shown

in Fig. 14.10 below.
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(a) For each temperature, provide an estimate of the characteristic

relaxation time and complete the table below.

(b) Use your results to estimate an activation energy, E, such that

t ¼ to expðE=kBTÞ.

14.5. The relaxation of glassforming materials is commonly non-exponential.

In this case, the response function is highly asymmetric in comparison

with that seen in Fig. 14.6, and is often modeled using a modified form

of Eq. (14.24), such as the Cole–Cole function:

R
ðoÞ ¼
Ro

1þ iotð Þa
;

where 0 < a < 1 is a parameter whose smallness is a measure of the

non-exponentiality. Show that, for this modified form, the real and

imaginary components of the response function are:

T (oC) T (K) 1/T (K) t (sec)
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Figure 14.10
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R0ðoÞ ¼ Ro

1þ otð Þacosðpa=2Þ

1þ 2 otð Þacosðpa=2Þ þ otð Þ2a

( )

;

and,

R00ðoÞ ¼ Ro

otð Þacosðpa=2Þ

1þ 2 otð Þacosðpa=2Þ þ otð Þ2a

( )

:

14.6. In the falling sphere method for determining viscosity, a metal sphere of

known radius b and mass m is sealed in a long tube containing a liquid.

Upon inverting, the sphere experiences drag given by the Stokes coeffi-

cient, z ¼ 6pZb, and falls at its terminal velocity. Describe how the

viscosity can be determined using this method and derive an expression

for the viscosity in terms of the measured terminal velocity and the mass

and radius of the sphere.

14.7. Consider a Brownian particle that flows at a constant speed uxðtÞh iNE
under the influence of an external force Fox̂, as described by its mobility

(the inverse of the drag coefficient),

m ¼
1

z
¼

uxðtÞh iNE
Fo

Use the Einstein relation (Eq. (8.19)) to show that the diffusivity (at long

times) can be expressed by the following Green–Kubo relation:

D ¼
1

3

ð

1

0

uð0Þ � uðt0Þh idt0:

Suggested reading

The first text on this list provides a good review of bulk relaxation in polymers. The

subject of fluctuation and dissipation is covered in some detail by Chaikin and

Lubensky as well as by Chandler.

N. G. McCrum, B. E. Read and G. Williams, Anelastic and Dielectric Effects in

Polymeric Solids (Dover Publications, New York, 1991).

P.M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge

University Press, New York, 2003).

D. Chandler, Introduction to Modern Statistical Mechanics (Oxford University Press,

New York, 1987).

R. Kubo, Rep. Prog. Phys. 29, 255 (1966).

G. Strobl, Condensed Matter Physics (Springer-Verlag, Berlin, 2004).
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PART IV

TRANSITIONS

On my bulletin board I have a picture of a recent U.S. president that someone

has photo shopped to include a text balloon that says, “The ice caps are not

melting. The water is being liberated.” Although intended to be humorous,

there is an element of truth to this statement. Phase transitions are in many

respects the result of a competition or war between two opposing forces. On

one side are the attractive interactions between particles that act to bind them

together and force them into a more ordered structure – a world governed by

potential energy. On the other side is thermal energy that acts to break these

bonds and liberate the particles so that they are free to move about – a world

dominated by kinetic energy. There is then a point of transition where one

world order trumps the other and it is this phenomenon that we consider in this

final set of chapters.

There are many sorts of phase transitions, but the two prominent examples

we will consider are the gas-to-liquid transition and the transition of

paramagnet-to-ferromagnet. In spite of the obvious differences between these

two systems, we will emphasize a remarkable level of similarity in how their

phase transitions proceed and how order develops in both situations.

Beginning in Chapter 15, we lay some groundwork regarding the funda-

mental nature of phase transitions and explore the meanings behind various

phase diagrams used to describe the transitions between different phases. Here

we examine the competition between inter-particle interactions and thermo-

dynamic forces in determining the conditions for phase transitions to occur and

emphasize the special role played by thermodynamic fluctuations near so-

called “critical” points, where certain thermodynamic quantities tend to

diverge.

Next, in Chapter 16, we investigate percolation theory as a simple,

random process that generates self-similar structures with similar diverging

behavior near a transition point. The percolation transition serves as an

important template for understanding second-order phase transitions and the

percolation structures bear a strong resemblance to the fluctuations present

near a critical point.



Theoretical attempts to understand phase transitions near a critical point are

developed in Chapter 17. These approaches begin from a fluctuation-free

assumption, known as mean field theory, but are extended using renormaliza-

tion techniques that exploit the self-similarity of the fluctuations. Finally, in

Chapter 18, we wrap up our survey of phase transitions with a look at

superconductors. Here again, critical-like features arise in the transition from

a normal conducting material to a superconducting phase.
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15 Introduction to phase transitions

Introduction

In this chapter, we develop some fundamental understanding of the nature of

phase transitions by examining two well-studied examples: the vapor-to-liquid

transition of fluids and the paramagnetic-to-ferromagnetic transition in mag-

netic materials. Here, our focus is on the experimentally observed features of

these two transitions and how to interpret and navigate the many phase

diagrams that describe them. The theoretical interpretation will be tackled later

in Chapter 17. We will find that, in general, a phase transition is accompanied

by some change in the amount of order as when, for example, liquid water

freezes into crystalline ice. Moreover, we can describe this amount of ordering

quantitatively by introducing an appropriate order parameter, whose value

changes significantly only during the transition. Based upon the manner in

which the order parameter changes, we can distinguish two different types of

phase transitions: those of first order for which the order parameter changes

discontinuously and those of second order for which it changes continuously.

Second-order transitions are possible for both the vapor-to-liquid transition

and the paramagnetic-to-ferromagnetic transition and are of interest due to the

way in which many properties diverge near the transition in a similar, power

law manner.

15.1 Free energy considerations

Phase transitions are governed by thermodynamics and thermodynamics is

governed by two laws. The first of these, dU ¼ TdS � PdV , is a statement of

conservation of energy during a reversible process. The second law is notori-

ously imprecise, but for our current purposes can be interpreted to mean that a

system will strive to minimize its Gibbs free energy, G ¼ U þ TS � PV . In a

conceptual way we can use this minimization principle to understand why and

where a phase transition occurs. Recall that changes in the free energy are

given by,

dG ¼ VdP � SdT ; ð15:1Þ
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from which it follows that

V ¼
@G

@P

� �

T

; ð15:2Þ

and,

S ¼ �
@G

@T

� �

P

: ð15:3Þ

Each of these last two equations is a statement regarding how the slope of either

G(P) orG(T) depends on the system’s volume or entropy, respectively. Consider

then how pressure affects a system of particles to produce either gas, liquid or

solid phases. A schematic representation of the G(P) diagram would appear

something like that shown in Fig. 15.1a, where the slope of each line segment is

consistent with Eq. (15.2) and the experimental observation that the volume of

the gas is much larger than that of the liquid, and the volume of the liquid slightly

larger than that of the solid (i.e. Vgas >> Vliquid > Vsolid). At low pressures, the

minimum free energy corresponds to the gas phase and hence the system

assumes the properties of a gas at these pressures. As the pressure increases to

the value Pb shown in the figure, the system is equally content to assume either

the gas or the liquid phase, since both share a common minimum free energy at

this point where the two line segments (labeledGgas andGliquid) intersect. At this

transition point, the two phases are said to coexist. Above Pb,Ggas>Gliquid and

so the system liquifies. At even higher pressures above Pf, the system freezes

into the solid phase, whose free energy is now the smallest of the other phases.

G

T

fixed P

(b)

TbTf

Ggas

Gliquid

Gsolid

fixed T

G

P

(a)

Pb Pf

Ggas
Gliquid

Gsolid

Figure 15.1 A schematic representation of the free energy of a fluid as a function of (a) pressure and

(b) temperature, illustrating how minimization of the free energy necessitates the occurrence

of well-defined phase transitions.
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A similar pattern emerges in Fig. 15.1b, where G(T) is developed using

Eq. (15.3) for a situation at a fixed pressure. Here the slopes are arranged

according to the ranking of entropies: Sgas > Sliquid > Ssolid. In this instance

the gas–liquid transition occurs at Tb and the liquid–solid transition at Tf.

15.2 Phase diagrams for fluids

The state of a fluid is defined entirely by its pressure, temperature and density.

Thus a truthful representation of the phase diagram would require three

independent axes and would be challenging to display. It is far more common

to see the phase diagram depicted only in a series of two-dimensional perspec-

tives obtained by a projection of the corresponding 3D diagram.

15.2.1 PT diagram

One familiar diagram is the PT diagram formed by projection onto the PT-

plane. A typical example is shown in Fig. 15.2 and appears as a set of line

segments known as coexistence curves. These curves mark the boundaries

between various phases as well as indicating the conditions of P and T at which

two or more phases can coexist in equilibrium. The first line segment

extending out from the origin is known as the sublimation curve and marks

the gas–solid transition. At the point labeled TP, this curve branches into two

other curves. The lower branch is known as the vaporization or condensation

CP

supercritical

fluid

supercritical

fluid

supercritical

fluid

P

T

solid

gas

liquid

PC

TC

TP

P2

T2

Figure 15.2 The PT phase diagram of a typical fluid. The point labeled TP is the triple point where all

three phases coexist in equilibrium. Point CP is the critical point above which there is no

gas-to-liquid transition. In this region the system remains in a gas–fluid state known as a

supercritical fluid.
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curve. It represents the gas–liquid transition and terminates abruptly at the

point labeled CP. The upper branch is known as the melting or freezing curve

and represents the liquid–solid transition. For many materials it is unclear

whether this last curve ever terminates.

In principle, the location of these line segments is quite precise. As an

example, imagine a container with a mixture of ice and water maintained at

0 �C and atmospheric pressure. This mixture is stable indefinitely. The ice will

neither shrink nor grow over time. However, if the temperature or pressure is

disturbed ever so slightly (as much as even, say, a part in a thousand), one or

the other phase will dominate. Either the ice will melt completely or the water

will freeze completely as a result of heat entering or exiting the container.

Returning to Fig. 15.2, there are two additional features to note. The first of

these is the unique point labeled TP in the figure at which three lines/segments

intersect. This intersection marks the triple point where all three phases (gas,

liquid and solid) are able to coexist indefinitely. The second point of interest is

the point labeled CP in Fig. 15.2, where the vaporization curve abruptly

terminates at some Pc and Tc. This point is referred to as the critical point,

above which condensation will not occur. Above Tc, the bonding between

particles needed for condensation to take place is thwarted by excessive

thermal agitation. As the pressure increases above Pc at these temperatures,

the system just continues to densify without the particles sticking together. In

the region above Pc and Tc, the phase is known as a supercritical fluid. Here the

system exhibits density like a liquid, but remains compressible like a gas.

Lacking cohesion, supercritical fluids also lack surface tension and are often

employed as “dry” cleaning solvents.

15.2.2 PV diagram

In Fig. 15.3, we present a typical example of the projection of the fluid phase

diagram onto the PV-plane for a series of fixed temperatures, increasing from T1
to T3. In actuality, we have normalized the volume by the number of particles to

obtain a specific volume (i.e. the volume per particle, u 	 V=N ¼ n�1), the

inverse of the number density. This provides an intensive variable, independent

of the actual size of the system. Each curve of fixed temperature is known as an

isotherm and we see that at the highest temperatures the shape is approximating

that predicted by the ideal gas law, where P / n � u�1. However, as tempera-

ture decreases near the critical temperature, Tc, we see significant distortions

develop. These distortions are a reflection of how the attractive forces between

the particles begin to dominate over the diminishing thermal agitation. Below

Tc, a gas–liquid phase transition is present and indicated by the horizontal

stretches of the isotherm where P remains constant.

To understand the information contained in the PV diagram, we consider an

experiment in which a gas starting at T3 is cooled at a fixed pressure, P2. To

achieve this fixed pressure, the gas is contained in a cylinder with a movable
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piston on which a fixed load is maintained throughout the cooling process.

Illustrations of the contents of the container at different points during the cooling

process are provided in Fig. 15.3. Between T3 and T2, the system remains a gas,

which contracts with cooling. At T2, the liquid phase begins to condense into the

bottom of the container and an interface (boundary between the two phases)

forms. Between point B and point D, heat flows out of the system as the gas is

transformed into liquid. The total heat leaving is the latent heat of vaporization.

At point D, the entire system has transformed into liquid and additional cooling

only results in a slight decrease in volume associated with the liquid’s thermal

expansion. The entire process can be reversed in vaporizing the liquid and will

require an identical input of latent heat.

Lever rule

Between points B and D in Fig. 15.3, both the pressure and the temperature are

fixed. These fixed values correspond to some point on the vaporization curve

of Fig. 15.2, where both liquid and gas coexist. Because both P and T are fixed,

T2T2

P2 P2

P2

P2

P2

T1 T3

gas

T2

AC BDE

D

P

gasliquid

P2

B

V/N

T1

T2

T3 > T2 > T1

TC

C

CP

PathAE

ul u ug

coexistence

dome

liquid

Figure 15.3 The PV diagram of a typical fluid is shown in the upper figure for a series of four isotherms. Only

below the critical temperature is phase separation possible. During the first-order transition, the

liquid phase separates from the gas with decreasing temperature at a fixed pressure, P2, as

illustrated in the lower set of figures.
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only the specific volume is changing during the transformation. However, the

specific volume of each phase separately is not changing: the specific volume

of the gas, ug, is given by point B and that of the liquid, ul, by point D in

Fig. 15.3. What is changing then are the proportions of gas and liquid, which

can be determined from the PV diagram using what is known as the lever rule.

The average specific volume of the system is,

u ¼
V

N
¼

Nlul þ Ngug

N
¼ X ul þ ð1� X Þug; ð15:4Þ

where Nl and Ng are the numbers of liquid and gas particles at any point during

the transition and the fraction of liquid particles is,

X ¼ Nl=N : ð15:5Þ

Now umust be located somewhere between points B and D, say at point C, and

the two line segments BC and BD have a ratio,

BC

BD
¼

ug � u

ug � ul
¼ X ð15:6Þ

equal to the fractional amount of liquid. During the transition from gas to

liquid, the position of u moves continuously from point B to point D. As

illustrated in Fig. 15.4, the point acts as a moving fulcrum that is always

positioned so as to properly balance the relative amounts of liquid and gas

particles present. At any point in the journey, the relative length of the “lever

arm” BC, extending from the fulcrum to the gas end is a measure of the liquid

present, while the other lever arm CD is a measure of the gas present.

15.2.3 TV diagram

Our final projection of the phase diagram is that onto the TV-plane, of which an

illustration is shown in Fig. 15.5 for a series of fixed pressures (isobars)

increasing from P1 to P3. Again, we see that at low densities, the isobars

approximate the linear dependence expressed by the ideal gas law, but that the

curves become progressively distorted as the density increases. We now repeat

our experiment with the gas in a cylinder with a movable piston, but this time

we fix the temperature at T2 and compress the gas by increasing the pressure.

We find, as shown in Fig. 15.5, the same progression of the system from a gas

into a liquid. Again, an amount of latent heat is released as particles of gas

condense into the liquid phase in moving from point B to point D in Fig. 15.5,

and the fraction of liquid can be determined using the lever rule.

15.2.4 Order parameter

Let us step back and consider what is happening during the above transi-

tions in terms of changing levels of order. In the gas at point B, each

υ

BD

BD

BD

C

C

C

Ng

Ng

Ng

Nl

Nl

Nl

υ

υ

Figure 15.4

The lever rule for phase

transitions. As the transition

proceeds, the average specific

volume shifts from gas-like to

liquid-like. At each stage the

numbers of particles in each

phase form proportions that

maintain a balanced lever.
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particle has a rather large volume of space, ug, all to itself. This free-range

existence implies a large degree of disorder in the sense that it is difficult

to predict where the particle is actually located. By comparison, the

particles in the liquid at point D have far less available volume

(ul << ug), and like chickens in a henhouse, are confined to a limited

region of space where we can better predict their location. Although the

liquid and gas remain disordered, in the sense that both are rotationally

invariant, the confinement of the particles of the liquid causes short range

correlations to appear and amounts to a level of ordering. To quantify this

level of ordering, we introduce an appropriate order parameter, f, such as,

f ¼ X
nl � ng

nC

� �

ð15:7Þ

to monitor the developing order. Here, nC is the density of the system at the

critical point. To see how this order parameter works, consider either of the

condensation experiments illustrated in Fig. 15.3 or Fig. 15.5. As we move

from gas to liquid, X changes from zero (no order) to X ¼ 1 (complete order).

Meanwhile, the magnitude of this ordering is reflected by the density differ-

ence between the endpoints (nl � ng) which, in turn, depends on how far

below the critical point the transition occurs.
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Figure 15.5 The TV diagram of a typical fluid is shown in the upper figure for a series of four isobars. Only

below the critical pressure is phase separation possible. During the first-order transition, the

liquid phase separates from the gas with increasing pressure at a fixed temperature, T2, as

illustrated in the lower set of figures.
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The variation of the above order parameter for the gas–liquid transition

is sketched in Fig. 15.6, both in the case when P is increased or T is

decreased to the transition point (P2, T2) of Fig. 15.3 and Fig. 15.5. Here,

the order parameter changes discontinuously at the transition and is an

example of what is known as a first-order transition. First-order transitions

are characterized by (1) a discontinuity in the order parameter and (2) a

finite amount of latent heat entering or exiting during the transition.

Shortly, we will discuss features of second-order transitions in which the

order parameter increases continuously and for which there is no latent

heat involved.

15.3 Supercooling/heating and nucleation

Although the transition point, where both phases coexist, is well defined, the

little experiment with cooling a gas in a cylinder that we described above is not

entirely accurate. In many instances, the gas can be cooled beyond the transi-

tion point without the development of any liquid. That is, it can be super-

cooled. Similarly, the liquid can often be superheated above the transition

without the development of any gas. How is this possible when minimization

of free energy would dictate that the phase transition should occur precisely at

the transition point?

Classical nucleation theory can help us understand the phenomenon of

supercooling (and of superheating). Let us consider the first tiny drop of

liquid that initially forms from the gas in our little experiment. Where did it

come from? Why is located where it is? The answers to these questions lie in

the density fluctuations present in the gas. As a result of some random

chance, a small number of gas particles, aided by the reduced thermal

first-order 

phase 

transition

latent

heat
T

P

latent

heat

f

f

Figure 15.6 Variation of the order parameter for the first-order phase transitions along the paths illustrated

in Figures 15.3 and 15.5.
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agitation present below Tc, came into close proximity and stuck together to

become a small amount of liquid. The Nl particles of this drop contain an

amount of free energy, Gliq ¼ Nlml, where ml is the free energy per liquid

particle, also known as the chemical potential. Because the system is super-

cooled, the chemical potential of the liquid is lower than that of the gas, and

we would expect the drop to be energetically favorable. However, the

formation of this drop comes with an additional energy penalty. The drop

is formed within the surrounding gas and so its existence necessitates the

formation of an interface whose surface tension adds to the free energy of the

drop by an amount,

Gsurface ¼ 4pR2g; ð15:8Þ

where R is the radius of the drop and g is the surface tension (energy per area).

Together, the total free energy of the drop is,

Gdrop ¼ Nlml þ 4pR2g; ð15:9Þ

while the free energy of the remaining gas is,

Ggas ¼ N � Nlð Þmg: ð15:10Þ

So in the process of forming the drop, the change in free energy of the system

as a whole is,

DGdrop ¼ Gfinal � Ginitial ¼ Nlml þ 4pR2gþ N � Nlð Þmg
� �

� Nmg
� �

¼ 4pR2g�
4p

3
R3nl

� �

Dm;

ð15:11Þ

where Dm ¼ mg � ml.

A plot of DGdrop as a function of the drop size is presented in Fig. 15.7,

which displays a maximum for a critical nucleation size, Rc, given by

Rc ¼
2g

nlDm
: ð15:12Þ

For small drops with R < Rc, the droplet is unstable and vaporizes back into the

gas phase. For drops larger than Rc, the free energy is reduced by increasing the

drop size and the droplet begins to grow in size by condensing additional

particles from the gas. Nowwe can understand the phenomenon of supercooling.

Just at the coexistence point,Dm ¼ 0 and so, according to Eq. (15.12), the critical

nucleation size is infinite. At this point, there is no density fluctuation likely to

produce such an infinitely large drop and so in spite of the possibility of both

phases coexisting, only the gas phase is present. As cooling proceeds below the

transition point,Dm increases (see Fig. 15.1b) and the critical drop size decreases.

Eventually, the critical size becomes comparable to the average size of density

fluctuations present in the gas and condensation of a liquid phase begins. Similar
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analysis explains the phenomenon of superheating, where a tiny bubble of gas

must eventually form with a size larger than a corresponding critical size.

15.4 Critical phenomena

So far we have examined first-order phase transitions, for which there is a finite

amount of latent heat entering or exiting the system, and for which the order

parameter changes discontinuously. We now turn our attention to an example

of a second-order phase transition, which for fluids occurs near the critical

point. We again imagine performing an experiment, but now with the system

confined to a box whose volume per particle is fixed at the critical value,

uC ¼ n�1
C ¼ VC=N , of the critical point. As illustrated in Fig. 15.8, we imagine

decreasing temperature from some point in the supercritical fluid region, such

that our system proceeds towards the critical point along a vertical path that

strikes the coexistence dome head-on.

In Fig. 15.8, we sketch the condition of the system at each point along the

path, as well as the corresponding lever arm analysis. At point A, far above the

critical point, the system is a supercritical fluid of fixed density that is

decreasing in temperature (and in pressure) with cooling. As it cools the

particles become ever more prone to their mutual attraction, but as yet remain

T2

P2

Rc

R 2

R 3

∆Gdrop

R

T2

P2

2R

Figure 15.7 Density fluctuations drive the spontaneous development of a drop of liquid of radius R in a gas.

If the size of the drop is less than the critical nucleation size, Rc, the drop is unstable and will

dissolve. If the size is larger than Rc, the drop will grow and the entire system will condense

into the liquid phase.
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unable to condense. Conversely, at point C far below the critical point, we find

that the system is separated into a liquid and a gas phase with a well-defined

boundary or meniscus between the two phases. By virtue of the lever rule, each

phase contains approximately equal numbers of particles. What then happens

at the critical point itself? It is as though the particles of the gas were suddenly

able to take advantage of their attractive interaction and condense with roughly

half of the particles instantly forming into a liquid! Just above the critical point,

we had a disordered phase and, without any latent heat flow, the system

spontaneously developed a more ordered phase.

Some appreciation for how this spontaneous transformation occurs is seen in

the shape of both the critical isotherm and critical isobar in Fig. 15.3 and Fig. 15.5,

just at the critical point. In both instances, the curve just flattens to a slope of zero

at the critical point. This means that quantities like the isothermal compressibility,

wT 	 �
1

V

]V

]P

� �

T

; ð15:13Þ
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Figure 15.8 Illustration of the second-order phase transition occurring near a critical point in fluids. Here we

imagine approaching the critical point by cooling the contents of a box whose volume and

particle number is fixed to match the critical density, nC. As we cool further below Tc, equal

portions of liquid and gas appear.
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and the isobaric expansivity,

aP 	
1

V

]V

]T

� �

P

; ð15:14Þ

both diverge near the critical point. For the case of cooling, this means that the

density of the gas is unstable and that any small decrease in temperature can

result in an infinitely large density increase. Similarly, any infinitesimally small

increase in pressure can cause an infinitely large density increase. In both

situations, these large density increases represent the nearly spontaneous

formation of a liquid-like phase (the high density and more ordered phase).

15.4.1 A closer look: density fluctuations

Although the transition at the critical point occurs rather spontaneously, in reality

it is a continuous transition developing over a very narrow interval of temperature

or pressure change. What actually happens in passing through the transition

region is illustrated by the series of sketches shown in Fig. 15.9. In this panel of

sketches, however, we illustrate the evolution of the system as it might appear if

A C

B

T >TCT = TCT <TC T >> TCT << TC

φ ∝
nL − nG

nC

Tc

second-order 

phase 

transition

Figure 15.9 An illustration showing the developing pattern of large-sized density fluctuations near the critical

point. As Tc is approached from above, small clusters of liquid phase sporadically begin to develop

and grow in size with cooling. Just at the critical point, these liquid clusters are substantially

interconnected and together comprise roughly half the particles in the box (via the lever rule). Below

Tc, the particles of the liquid phase rapidly densify while the particles of the gas quickly expand and

the order parameter, shown in the lower figure, develops continuously below Tc in a form

characteristic of a second-order phase transition.
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our experiment were conducted in a zero-gravity environment (such that the

denser phase would not sink in the container). Far above the critical point, the

system is entirely gas with a range of small density fluctuations randomly

occurring. Because the attractive forces are ineffective at these temperatures,

the fluctuations quickly dissipate. As the system approaches near to, but still just

above the critical point, these random fluctuations in density are amplified by the

diverging nature of both the compressibility and the expansivity and they lead to

a segregation of the system into small regions of liquid (caused by a positive

density fluctuation) and small regions of gas (promoted by a negative density

fluctuation). Since the system is now closer to Tc, the attractive forces are more

effective in allowing these regions to persist for longer periods of time.

Imagine what happens when a small region of high density forms and

persists for some time. Because this region is more ordered, it suffers a drop

in entropy that necessitates a small outflow of heat to its surroundings. The

region cools and grows, as the surroundings heat and expand, in a sort of

feedback process that is the source for the divergences in Eq. (15.13) and

Eq. (15.14). Here, above the critical point, the surface tension is negligibly

small and, instead of forming droplets, the liquid regions tend to assume

dendritic patterns of a self-similar, fractal nature. Just at the critical point,

these randomly forming liquid “clusters” persist for very long times and

develop branches that span the entire container. Here the system can be viewed

as either dendritic liquid clusters in a gas or, equivalently, as dendritic gas

clusters in a liquid with roughly equal numbers of particles devoted to either

phase. Below the transition, the system separates completely into a liquid drop

and a surrounding gas. With additional cooling, the liquid drop densifies while

the surrounding gas becomes less dense. A plot of the order parameter, shown

in Fig. 15.9, displays a rapid, but continuous development near the transition

point that is the signature of a second-order transition.

On approaching the critical point from either direction, we see a develop-

ing structure in the form of large-sized density fluctuations. At some point,

these fluctuations grow to a size, x, comparable to that of the wavelength of

visible light and result in intense scattering known as critical opalescence.

Away from the transition, where the density fluctuations are small, little

scattering occurs and the majority of incident light exits in the forward

direction – the system appears transparent (provided that there is no absorp-

tion). However, as the critical point is approached, the system becomes turbid

or opalescent (i.e. cloudy or milky) to an extent where almost all of the

incident light is scattered away.

Critical opalescence: the Ornstein–Zernike theory

An early attempt to interpret the scattering of light near the critical

point was advanced by Ornstein and Zernike (1914), and it is fruitful to
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review their approach here. Recall that the structure factor for an

isotropic medium is,

SðqÞ ¼ 1þ nh i

ð

gðrÞe�i~q�~rd3~r ¼ 1þ nh iGðqÞ;

where GðqÞ is just introduced as shorthand for the Fourier transform of the pair

distribution function. If we are interested in the angular variation of visible scattered

light, for which q is small, we might consider attempting an expansion of GðqÞ.

However, since g(r) develops large fluctuations near the critical point, its Fourier

components at small qwill tend to diverge and it is unlikely that the expansion will

properly converge. Instead, Ornstein and Zernike consider the quantity,

CðqÞ 	
GðqÞ

1þ nh iGðqÞ
/

GðqÞ � 0; for T >> TC
nh i�1; for T � TC;

�

ð15:15Þ

which remains finite on approach to the critical point. This can now be

expanded in a Taylor series,

CðqÞ � co þ
@C

@q

� �

q�o

qþ
1

2!

@2C

@q2

� �

q�o

q2 þ � � �

¼ co þ c1qþ c2q
2 þ c3q

3 þ � � � ;

where the coefficients are given by,

c‘ ¼
1

l!

@lC

@ql

� �

q¼0

¼
ð�iÞl

l!

ð

CðrÞrl cos yð Þlr2dr sin ydydf: ð15:16Þ

From Eq. (15.16), one notes that the angular integration will cause all coeffi-

cients of odd l to vanish such that, to leading order in q,

CðqÞ � co þ c2q
2: ð15:17Þ

From Eq. (15.15) and Eq. (15.17), we find that the inverse of the scattered

intensity increases with increasing q as,

S�1ðqÞ ¼ 1� nh iCðqÞ � � nh ic2
1� nh ico
� nh ic2

þ q2
� �

� R2 k2 þ q2
� �

;

ð15:18Þ

where,

R2 ¼ � nh ic2 ¼
2p nh i

3

ð

r4CðrÞdr;

and

k2R2 ¼ 1� nh ico ¼ S�1ð0Þ: ð15:19Þ
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An example of this behavior is shown in Fig. 15.10, where the inverse of

the scattered intensity from a container of argon is plotted against the square

of the scattering wave vector so as to highlight the linear relation with q2 in

Eq. (15.18). Here the slope is proportional to R2 and the intercept is

proportional to

S�1ð0Þ ¼ k2R2 / w�1
T / ðT � TcÞ

g; ð15:20Þ

where, as was pointed out in Chapter 9, the scattered intensity of a liquid or gas

at small q is proportional to the compressibility. In the Ornstein–Zernike

theory, the pair distribution function (obtained by an inverse Fourier transform

of Eq. (15.18)) has the form,

gOZðrÞ /
1

R2

e�kr

r
; ð15:21Þ

which, curiously, is seen to match that for the structure of a random walk (see

Eq. (8.8)). The exponential term thus represents a cutoff for the self-similarity

and, in the light of how k vanishes on approach to the critical point (see
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Figure 15.10 Small angle X-ray scattering from argon near its critical point (Tc ¼ 150.85 K), plotted in the

manner of the Ornstein–Zernike result of Eq. (15.18). Note that the x-axis is proportional to q2.

With cooling toward Tc, the y-intercept of each curve is seen to approach zero, implying a

divergence in the compressibility, wT , in accordance with Eq. (15.20). (Adapted from Thomas

and Schmidt, 1963.)
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Eq. (15.19)), we can identify its inverse as that of the diverging size or

correlation length of the clusters,

x ¼ k�1 / ðT � TcÞ
�n: ð15:22Þ

In more careful measurements, it is found that the structure factor displays a

slightly different q-dependence, of the form SðqÞ � q�2þZ, such that more

generally,

gðrÞ /
1

R2

e�r=x

rðd�2þZÞ
: ð15:23Þ

15.5 Magnetic phase transitions

There is remarkable similarity in the features of phase transitions in both fluids

and magnetic materials. Like fluids, a magnetic material consists of a large

number of interacting objects, and its properties are influenced by various

external fields. However, unlike the fluid phase transitions we have discussed

thus far, the magnetic phase transitions we consider here take place while the

material remains in the solid phase. In this case the particles remain fixed and

the density of the crystal is largely impervious to changes in external pressure.

Instead, the property of interest for a magnetic system is its magnetization, M,

under the influence of temperature and an external magnetic field, H.

As described in some detail in Chapter 4, magnetic materials are composed of

particles which, as a result of an imbalance in the atomic electron configuration,

possess a net angular momentum and, in turn, a net magnetic moment,~m. There

are certain quantum mechanical restrictions regarding the direction that the spin

of an atom can take in space; but aside from these, the spin is otherwise

unrestricted and may point in any random direction, as illustrated in Fig. 15.11.

When the spins are randomly oriented, the magnetization,

~M ¼ n ~mh i ð15:24Þ

vanishes. But if an external magnetic field is applied, each spin experiences a

torque,

~t ¼~m� ~H ; ð15:25Þ

which acts to align the magnetic moment in the direction of the external field.

We now begin to see the parallels emerging between magnetic and fluid

materials. For both, temperature increases the thermal agitation of the particles

and, as a field, tends to randomize or disorder the system. For magnets,

temperature tends to randomize the spins, causing the magnetization to vanish.

Conversely, the external field, H, acts to order the system by aligning the spins

through a mechanical process involving work. This mimics the effect of
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pressure in the fluid case, which orders the system by performing work to

increase the particle density. The fields P and H are thus counterparts. For the

fluid system, ordering was measured by the development of a higher density

(liquid) phase in place of the lower density (gas) phase. For the magnetic

system, ordering is characterized by the magnetization, M, which serves as an

appropriate order parameter,

f ¼
M

MS

; ð15:26Þ

where MS ¼ nm is the maximum value of the magnetization obtained when all

the spins are aligned.

15.5.1 Exchange interaction

In the case of fluids, we required an attractive interaction between the particles

that would encourage them to stick together. The source of this attraction was

the pair interaction (i.e. the van der Waals attraction), which took hold only for

T < Tc. In the magnetic case it is the exchange interaction introduced in

Chapter 4 (see Eq. (4.27)). In this interaction, a lowering of energy is achieved

φ =
M

MS

Tc

second-order 

phase 

transition

Figure 15.11 Illustration of the second-order phase transition in magnets. In the presence of a weak external

field above Tc, magnetic spins are randomly oriented and produce no net magnetization. Just

below Tc, small clusters of aligned spins sporadically form and grow with cooling until all spins

are aligned. Consequently, the order parameter (i.e. the magnetization) increases in a

continuous fashion.
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whenever two spins are aligned and, provided that the thermal energy is low

enough, the aligned state remains stable. The boundary between where the

exchange interaction is ineffective and where it begins to take hold, occurs at

the Curie temperature (or critical temperature), Tc. Above Tc, spins are ran-

domized and can only be aligned by application of an external magnetic field.

When that magnetic field is removed the spins return to a randomized condi-

tion. This is much like compressing a gas above Tc – all we achieve is a

packing of the particles without any cohesion and return to a less ordered

condition on removal of the pressure. Above Tc, the magnetic system is

referred to as paramagnetic. Below Tc, the material enters into the ferromag-

netic phase. Here the exchange interaction dominates over the thermal agita-

tion and when the external field is removed, the magnetization does not vanish.

15.5.2 Magnetic phase diagrams

Like the fluids, we can discuss the paramagnetic–ferromagnetic phase transi-

tion in terms of various projections of the three-dimensional (H, M and T)

phase diagram. The first of these is the HT diagram (corresponding to the PT

diagram of fluids), shown in Fig. 15.12a. It is rather simple and consists of a

single, horizontal line segment extending below Tc at H ¼ 0. The diagram

T
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T

TC

(b)

(a)

M

H

(c)

HC

MR
A

TC

B

Figure 15.12 Phase diagrams for the paramagnetic–ferromagnetic phase transition. (a) The HT diagram shows

that the transition occurs in the absence of an external field. (b) The MT diagram displays a

shape similar to the coexistence dome of the fluid systems. However the two branches do not

represent two phases, but rather two possible directions for the magnetization depending on the

direction of an external field. (c) The MH diagram is shown for three isotherms (solid curves). Note

that for the critical isotherm, the slope wm ¼ @M=@H, diverges for H ! 0. A residual

magnetization, MR, is present in the system at weak fields below Tc and can only be removed by

applying a reverse field of magnitude Hc.
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simply indicates that the randomized (paramagnetic) phase is separated from

the ordered (ferromagnetic) phase at that temperature. The external field, as

mentioned above, only serves to bias the direction of the magnetization.

The TM diagram (corresponding to the TV diagram of fluids) is shown in

Fig. 15.11b and exhibits a dome-like shape, comparable with the coexistence

dome in fluids. Here, however, there are not two coexisting phases indicated,

but rather two options for the direction of the magnetization of a single ordered

phase, depending on the bias provided by a vanishingly small external field H.

In the light of Eq. (15.26), we see that the paramagnetic–ferromagnetic transi-

tion is a second-order phase transition in which the magnetization develops

continuously, without the action of any external work (performed by H, which

can be zero) or equivalent latent heat.

The last projection is the MH diagram (corresponding to the PV diagram of

fluids), which is shown in Fig. 15.11c. Three individual isotherms are displayed.

The first of these is above Tc, in the paramagnetic phase, where application of the

external field increases the magnetization towards its saturation value, MS. As

the field is removed, thermal energy randomizes the spins and the magnetization

returns to zero along the same curve. Below Tc, in the limit of a vanishingly

small external field, the magnetization is finite as a result of the spontaneous

ordering. When the field is changed below Tc, the magnetization traces out the

sort of hysteresis loop that was discussed previously in Chapter 4.

What happens just at Tc? Note here how the Tc isotherm in Fig. 15.12c just

becomes vertical in passing through the origin and mimics how the Tc isotherm

of a fluid just becomes flat near the critical point (see Fig. 15.3). For fluids, this

flattening of the isotherm indicated a diverging compressibility wherein small

pressure fluctuations created large density variations and the formation of

dendritic structures. Here, it is the magnetic susceptibility,

wm 	
@M

@H
; ð15:27Þ

that is diverging near the critical point and similarly implies that any small

fluctuation in the local field will motivate a large fluctuation of magnetization.

Like the fluid case, the divergence has its source in a feedback process that

leads to the formation of dendritic patterns near Tc.

15.6 Universality: the law of corresponding states

In our discussion above, we have witnessed considerable similarity between

the fluid and magnetic phase transitions near their respective critical points.

Although each addresses different properties (particle density versus spin

alignment), and each involves a different interaction (van der Waals versus

exchange), each exhibits a diverging response just near the critical point.
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Indeed, in careful experiments, these divergences are seen to exhibit power law

dependences of the form,

wT � ðT � TCÞ
�g

wm � ðT � TCÞ
�g;

ð15:28Þ

where the exponent, g � 1.3, displays a similarity that is remarkably unex-

pected for what would seem to be very different systems. Furthermore, many

second-order phase transitions display an interesting law of corresponding

states, such that properties (like the coexistence curves shown in Fig. 15.13

for a variety of fluids) behave identically when the state variables (P, V and T)

are scaled to values (Pc, Vc and Tc) at the critical point. This is only a

foreshadowing of the many similarities we will encounter between the behav-

iors of unlike systems when they approach a critical point. As it turns out,

many of the similarities arise from the geometry of the isotherms very near Tc,

and we often speak about such different systems as belonging to the same

universality class, because of how they share similar critical exponents. We

will examine this universality in more detail in Chapter 17, but first, we

examine an important model regarding the structure of the density fluctuations,

known as percolation theory, which captures much of the underlying physics

behind critical behavior.
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Figure 15.13 Demonstration of the law of corresponding states for fluids near their critical point. Here the TV

coexistence curves of a diverse set of fluid systems are seen to collapse to a common (universal)

curve upon scaling the temperatures and densities to those at the critical point. (Adapted from

Guggenheim, 1945.)
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Summary

c Phase transitions are a consequence of the thermodynamic requirement

for minimization of free energy of a system of particles, and generally

involve a change in the degree of order as characterized by some

appropriate order parameter.

c Phase transitions are classified into two types. First-order transitions

exhibit a discontinuous change in the order parameter and an exchange

of latent heat. Second-order transitions exhibit a continuous change in

the order parameter and occur in the absence of any latent heat exchange.

c Diverging susceptibilities near a critical point drive the production of

large, spatial fluctuations in the order parameter. In the case of fluids,

these density fluctuations cause substantial scattering, known as critical

opalescence.

c Laws of corresponding states, wherein the behaviors of different

systems appear identical when thermodynamic fields are appropriately

scaled to those at the critical point, are characteristic of second-order

phase transitions.

Exercises

15.1. Some people have reported being scalded by water that suddenly began

boiling vigorously when removed from a microwave oven. Oven manu-

facturers now recommend that water be heated with a non-metallic

stirrer or toothpick inserted into the liquid to reduce the chances of this

happening. Explain why the sudden boiling occurs and how the stirrer

aids in reducing the effect.

15.2. (a) Derive Eq. (15.12) for the critical nucleation size. (b) Show also that

the barrier for homogeneous nucleation is DGjRc
¼ 16pg3

3n2
l
Dm2

: (c) Show that

for small undercoolings of amount DT , the barrier can be expressed as

DGjRc
¼ 16p

3
g3

n2
l

� �

Tb
LV

� �2

DTð Þ�2
, where Tb is the boiling point and LV is

the latent heat of vaporization.

15.3. In heterogeneous nucleation, an additional surface is introduced as a

catalyst for the growth of nucleation sites. Imagine then a droplet of

liquid forming on the surface, as illustrated in Fig. 15.14. The liquid

drop takes the form of a spherical section and meets the surface with a

contact angle y. (a) Show that the contact angle is given by
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cos y ¼ gsg � gsl
� �

=glg. (b) Show that the critical nucleation radius is

unchanged and equal to that for homogeneous nucleation (Eq. (15.12)).

(c) Show, however, that the nucleation barrier is reduced over that of

homogeneous nucleation (see Exercise 15.2) by a factor, f ðyÞ such that

DGjRc
¼ 16pg3

3n2
l
Dm2

h i

2� 3 cos yþ cos3yð Þ=4.

15.4. Show that the slope of the liquid–vapor coexistence curve is given by,

dP
dT

¼
Sg�Sl
Vg�Vl

.

15.5. A liquid crystal undergoes a transition from the isotropic phase, where

the particles are randomly oriented, to the nematic phase where the

particles are oriented in a common direction. A common choice for

the order parameter is f ¼ 3cos2y�1
2

D E

, where y is the angle between

the long axis of the particle and the director. Verify that this is an

appropriate order parameter by showing that it vanishes in the dis-

ordered phase.

Suggested reading

I much recommend Schroeder’s thermodynamics textbook. The text by Stanley is

devoted almost entirely to the subject of critical phenomena in both fluids and magnetic

systems.

C. Kittel and H. Kroemer, Thermal Physics, 2nd Ed. (W. H. Freeman and Co., San

Fransico, 1980).

D. V. Schroeder, An Introduction to Thermal Physics (Addison Wesley Longman, New

York, 2000).

H. Eugene Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford

University Press, New York, 1971).
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Figure 15.14
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16 Percolation theory

Introduction

Percolation theory refers to properties of a simple experiment in which random

events produce features common to second-order transitions; namely a con-

tinuously developing order parameter and self-similar, critical-like fluctu-

ations. The model itself is quite simple, yet as we will see, it has been used

extensively to interpret many phenomena found in nature, including not only

the conditions under which liquids percolate through sand (from which the

theory obtains its name), but also the manner in which stars form in spiral

galaxies.

In this chapter, we investigate the percolation process in some rigorous

detail to demonstrate how percolation clusters develop in a self-similar, power

law manner near the percolation threshold. We also take this opportunity to

introduce both the finite-sized scaling and renormalization techniques. Both of

these techniques exploit the inherent self-similarity to gain insight into the

critical exponents that characterize a second-order phase transition, and will

prove useful to us in the next chapter.

16.1 The percolation scenario

At the heart of percolation theory is the question of how long-range connec-

tions develop through a random process. Consider a geometrical lattice of

some arbitrary dimension such as the two-dimensional networks of pipes

shown in the form of a square lattice in Fig. 16.1a. Here, the pipes are fully

connected and fluid is free to flow from one edge of the network to the other.

Suppose we now insert valves throughout this arrangement of pipes in one or

the other of two ways. In the first instance, which corresponds to bond

percolation, the valves are placed inside the pipes (i.e. inside the “bonds”

between intersections), as shown in Fig. 16.1b. In the alternate case, referred to

as site percolation, the valves are placed at the intersection of the pipes. Again,

when all the valves are opened, the network is fully connected and fluid can

flow readily from one side to the other. But, if all the valves are closed, the

network is fully unconnected and fluid is unable to flow anywhere.
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Percolation theory asks, “how does the connectivity of the network develop

as valves are opened at random?” Suppose a fraction, p, of the closed valves

are opened. Obviously, if p ¼ 0, the connectivity remains absent and if p ¼ 1,

the connectivity is maximum. However, at some intermediate value of p, as is

the case for Fig. 16.1c, there will occur a dendritic network of connections for

which the fluid can just manage to flow from one side to the other.

In Fig. 16.2, site percolation is carried out on a square lattice with each panel

illustrating the evolution of the connectivity as a function of the fraction of

open valves. In the figure we represent an opened valve by a black dot which

indicates that the valve is activated or that the site is “occupied”. Initially, all

the sites are unoccupied (corresponding to closed valves and a complete

absence of any connections). In Fig. 16.2b, one-quarter of the sites have been

randomly chosen for occupancy and we see that the lattice consists mainly of a

large number of isolated occupied sites (monomers) with only some occasional

occurrences of pair and triplet combinations (dimers and trimers), for which

limited connectivity is present. In the figure, dark lines represent these connec-

tions and the number of sites, s, that participate in such a “cluster” provides a

measure of its mass. Clearly, the distribution of these s-mers decreases with

mass, as illustrated in Fig. 16.2b, where we count some 21 monomers, eight

dimers, two trimers and one each of a 4-mer and a 6-mer.

As p is increased further, such as in Fig. 16.2c, where p ¼ 0.50, we find that

the distribution of cluster masses has evolved. The average mass of the largest-

sized clusters, smax, has increased and the numbers of very small-sized clusters

have decreased. Upon reflection, we see that two mechanisms of cluster

growth are at work. The first of these is a rather innocuous self-growth

mechanism, in which the random introduction of a newly occupied site

(a)

Bond 

Percolation

(b)

Site 

Percolation

(c)

Figure 16.1 (a) A network of interconnected pipes form a square lattice. (b) In the case of bond percolation,

the valves are inserted within the connecting pipe. (c) For site percolation, the valves are

inserted at points where pipes connect. In either situation, valves are randomly opened and we

inquire as to the degree of connectivity that develops.
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happens to occur beside an existing cluster, causing its mass to increase by

one. The second of these is a more severe aggregation process, in which the

random introduction of a newly occupied site happens to link together two pre-

existing clusters, causing the mass of the resulting cluster to far exceed that of

either of the two from which it formed.

The aggregation mechanism is a key feature to the sharpness of the con-

nectivity transition. To see this, consider again the case of p ¼ 0.50 as it is

reproduced in Fig. 16.2d. In this figure, two situations are shown in which just

three additional sites (corresponding to a minor increase to p � 0.51) have

been (non-randomly) added. In one instance, the added sites produce a very

large cluster that spans from left to right across the network, while in the other

p = 0

p = 0.50

p = 0.25

(c)

(b)

(a)

p >  0.50

p = 1

p =  0.75

(f)

(e)

(d)

Figure 16.2 Site percolation is carried out on a 13 � 19 square lattice. (a) Sites on an unoccupied lattice

become randomly occupied. (b) At 25% occupancy, a small number of other-than-monomer

clusters have developed and (c) by 50% a well-defined distribution of cluster sizes is present. (d) At

this point we see that the introduction of as few as three additional (but well-chosen) occupied

sites will produce a spanning cluster that connects one side of the system to the other. Two

examples are shown in (d): when the three white circles are added to the panel in (c), a spanning

cluster forms horizontally across the system and when the three black circles are instead added,

a spanning cluster forms vertically. (e) Additional sites above the percolation threshold rapidly

incorporate remaining finite clusters into the mass of the spanning cluster. (f) At 100% occupancy,

connectivity reaches its maximum.
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case, the cluster spans from top to bottom. When this “spanning” cluster forms,

a percolating pathway is produced and long-range connectivity of the network

is first established.

16.1.1 Percolation threshold: the spanning cluster

In the example of Fig. 16.2d, the three added sites were not randomly chosen,

to make a point. Nevertheless, they could have occurred randomly to produce a

spanning cluster at p � 0.51. Had other sites been randomly selected, the

percolation path might not yet have formed. In fact, the precise fraction of

occupied sites at which the pathway forms would vary from any one simula-

tion to the next, depending upon what series of random choices were actually

made. To circumvent this, we need to study the scenario multiple times to

produce an appropriate ensemble average. If this is done, one finds there is a

well-defined critical fraction, pc, at which a spanning cluster forms to produce

a complete connection from one side of the lattice to the other. At this

percolation threshold, the connectivity “percolates” across the entire network.

Studies of the percolation scenario indicate that the specific value of pc
depends not only on the dimensionality of the network, but also on the type

of lattice (square, triangular, hexagonal, etc.) and on the percolation variety

(site or bond percolation), as summarized in Table 16.1.

What now happens above this percolation threshold? As illustrated in

Fig. 16.2e, the aggregation process remains active and, now that a spanning

cluster exists, the largest of the remaining finite clusters are quickly incorpor-

ated into it. As a result, the mass of the spanning cluster grows quite dramatic-

ally just above pc, while the remaining population of finite clusters diminishes

rapidly. If we define P to represent the probability that any randomly selected

site is connected with, and thus a member of the spanning cluster, we would

find (with appropriate ensemble averaging) a dependence for P on p, like that

illustrated in Fig. 16.3. Below pc, a spanning cluster does not yet exist and so

Table 16.1 Percolation thresholds for both site and bond percolation conducted on various
lattices (data obtained from Stauffer (1985).)

Dimension, d Lattice type pc (site) pc (bond) Coordination

1 Chain 1 1 2

2 Honeycomb 0.696 0.653 3

2 Square 0.593 0.500 4

2 Diamond 0.428 0.388 4

2 Triangular 0.500 0.347 6

3 SC 0.312 0.249 6

3 BCC 0.245 0.179 8

3 FCC 0.198 0.119 12
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the probability that a site belongs to a spanning cluster is zero. At pc, the

spanning cluster just forms and grows quickly as a result of further aggrega-

tion. The probability P becomes finite here and increases rapidly. As p

approaches 1, all of the finite clusters are eventually incorporated into the

spanning cluster (see Fig. 16.2f) and P approaches unity.

Look closely at Fig. 16.3. What does it remind you of? Hopefully, you will

recognize its strong similarity with that of an order parameter for a second-

order phase transition occurring at p ¼ pc! Indeed, percolation is an example of

a second-order transition and provides an excellent introduction to some of the

phenomena that arise near such transitions.

16.1.2 A closer look: cluster statistics

Now that we have outlined the concepts of the percolation scenario, let us

look at the properties of these clusters in some greater detail. Although the

series of figures in Fig. 16.2 is illustrative of the process, we really imagine

that the lattice is far more extensive than the 13 � 19 grid shown (infinite in

fact), and therefore the distribution of cluster masses is well-defined and

forms a continuous function of the mass s. In this case, we could define a

cluster mass distribution function, ns, to represent the number of s-mers per

lattice site,

ns ¼ ð# s -mersÞ=NTOT; ð16:1Þ

where NTOT � Ld is the total number of sites on a d-dimensional lattice of

length L. One consequence of this normalization scheme for the distribution is

that the first moment of the distribution just equals the fraction of occupied sites p,

X

1

s¼1

sns ¼
1

NTOT

X

1

s¼1

ð# s -mersÞ � s ¼ NOccupied

NTOT

¼ p: ð16:2Þ

S ∝ (pc − p)−γ

P ∝ (p − pc)
b

pc

S P

0 1

1

Figure 16.3 An illustration of how the average cluster mass diverges in a power law manner on approach to

the percolation threshold, and how the mass of the spanning cluster develops rapidly (in a

power law fashion) just above the threshold.
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Cluster mass distribution: homogeneous functions

What is the functional form of ns? Clearly it must have certain properties.

Firstly, it most likely is a decreasing function of the cluster mass because at any

p< pc there are always more small clusters than there are large clusters (see for

example Fig. 16.2c). Secondly, for p < pc, it must drop to zero rather rapidly

for masses s � smax, where smax is the average mass of the largest clusters

present. Lastly, we note that the aggregation process has a built-in self-

similarity: the aggregation occurs similarly at all scales. For example, a newly

occupied site is just as likely to merge two 5-mers into a 10-mer as it is to

merge two 50-mers into a 100-mer. Consequently, ns should reflect this self-

similarity and the distribution (at least for s < smax) should appear the same at

different scales. A function that displays this sort of self-similarity is a homo-

geneous function of the form gðlxÞ ¼ lagðxÞ; of which the most common

example is a power law, gðxÞ � x�t: For these reasons, we assume the cluster

mass distribution to be of the form,

ns � s�tf ðs=smaxÞ � s�te�s=smax ; ð16:3Þ

where the function f(z) produces the desired cutoff for s > smax. A plausible

choice for this cutoff function is an exponential as suggested in Eq. (16.3).

An illustration of the cluster mass distribution is shown for p < pc in

Fig. 16.4a in a double logarithmic scale for which the cutoff appears quite

dramatic. Note that as p increases, the distribution spreads outwards as a result

of the aggregation of smaller clusters into larger ones and downwards as a

result of the depopulation of smaller clusters. Aside from the cutoff, the

distribution is self-similar in that it appears the same for all mass scales less

than smax. Indeed, the cutoff itself provides the only evidence of a relevant or

special mass scale, as it marks a bend in the distribution function.

log s

lo
g
 n

s
 

lo
g
 n

s
 

increasing p
s–τ

smax

p < pc

log s

increasing p

s– τ

p = pc

smax (finite)

p > pc

(a) (b)

Figure 16.4 The evolution of the cluster mass distribution of finite-sized clusters during the percolation process.

(a) Below the percolation threshold, the average cluster mass (as well as the maximum cluster mass, smax)

increases with increasing occupancy and smaller-sized clusters develop a self-similar distribution

described by a power law, ns � s
�t: As the occupancy increases, cluster–cluster aggregation forces a

reduction in the population of smaller clusters. (b) Above the threshold, a spanning cluster is present

which rapidly accumulates mass by the incorporation of the remaining finite-sized clusters. Both the

maximum cluster mass and population of finite-sized clusters decrease as a result.
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How does this relevant mass scale (smax) depend on p? The growth process

occurring for the largest clusters is clearly non-linear and must lead to a

divergence of smax near pc, where smax produces the spanning cluster extending

across the infinitely large lattice. To a good approximation, this divergence is

well described by another power law,

smax � pc � pj j�1=s: ð16:4Þ

Average cluster mass

The largest clusters have a mass, smax, but what is the average mass of any

arbitrarily chosen cluster? To determine this we need to employ the cluster

mass distribution Eq. (16.3) that was just developed, and recall that ns is the

number of s-mers per lattice site. The quantity sns is the probability that any

arbitrarily chosen site belongs to an s-mer, and the fraction of clusters with

mass s is then,

ws ¼
sns

P

s
sns

¼ sns

p
: ð16:5Þ

The average cluster mass we seek is just the weighted average,

S ¼
X

s

sws ¼

P

s
s2ns

p
: ð16:6Þ

Since we are assuming a large lattice and thus a continuous distribution of

masses, we can employ an integral,

S �
ð

1

0

s2nsds ¼
ð

1

0

s2�te�s=smaxds; ð16:7Þ

where ns from Eq. (16.3) has been incorporated. To carry out the integration,

we choose the change of variables z ¼ s/smax, such that,

S � smaxð Þ3�t

ð

1

0

z2�te�zdz � smaxð Þ3�t: ð16:8Þ

Here, the integral over z contains the cutoff function (which rapidly falls to

zero) and produces an unknown, but finite, constant. Incorporating the power law

divergence for smax from Eq. (16.4), we find (not surprisingly) that, like smax, the

average cluster mass also diverges on approach to pc as another power law:

S � pc � pj j�g; g ¼ 3� t

s
ðt < 3Þ; ð16:9Þ

as is illustrated in Fig. 16.3.
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The spanning cluster

As discussed earlier, a spanning cluster forms at pc and accretes mass rapidly

thereafter. As it grows, remainingfinite-sized clusters that are not part of the original

spanning cluster are “swallowed up” by the spanning cluster, causing the cluster

mass distribution of the finite clusters to recede and eventually vanish, as illustrated

in Fig. 16.4b. To determine the variation ofP just above the threshold, we recognize

that the occupancy, p, varies continuously across the transition. Just before the

spanning cluster forms,P¼ 0 and p ¼ P

1

s¼1

snsðp � pcÞ, as given by Eq. (16.2). Just
above the threshold, p can be separated into those sites belonging to the spanning

cluster, P, and those remaining occupied sites found in other, finite-sized clusters,

p ¼ P þ
X

finite s

snsðp � pcÞ; ð16:10Þ

For p to remain continuous across the transition, we thus require

X

s

snsðp � pcÞ � P þ
X

finite s

snsðp � pcÞ; ð16:11Þ

or, upon rearranging and switching again to an integral form,

P �
ð

1

0

s�t � s�te�s=smax

h i

sds ¼
ð

1

0

s1�t 1� e�s=smax

h i

ds: ð16:12Þ

Integration by parts results in,

P � s2�t

2� t
1� e�s=smax

h i

�

�

�

�

1

0

þ
ð

1

0

s2�t

t� 2

e�s=smax

smax

ds; ð16:13Þ

and, since P must remain finite, t > 2 and the first term vanishes. As for the

remaining integral, we again apply the change of variables z ¼ s/smax to obtain,

P � smaxð Þ2�t

t� 2

ð

1

0

z2�te�z dz � smaxð Þ2�t� p� pcj jb; b ¼ t� 2

s
ðt > 2Þ;

ð16:14Þ

and find thatP vanishes near pc in a power law fashion, as is illustrated in Fig. 16.3.

Fractal clusters

Examine again the clusters in Fig. 16.2c, just near the percolation threshold.

Their shape is determined by a random process and one sees that they possess a

rather open structure containing voids and filaments. Indeed, if this figure were

reproduced using a much larger sized lattice that approaches that of an infinite
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space, we would find that the clusters are another example of fractal structures

(like those introduced in Chapter 8), whose mass is related to their spatial size

by a fractal dimension,

s / RDf

s : ð16:15Þ

Here, Rs is some appropriate measure of the effective diameter or radius of the

cluster, such as its radius of gyration.

The fractal structure is evidenced in all reasonably large clusters, including

those largest clusters, s ¼ smax, for which we can define an important relevant

length scale, the correlation length,

x / ðsmaxÞ1=Df : ð16:16Þ

The correlation length is significant as it establishes the one (and only) relevant

length scale controlling the entire percolation process. To see this, just review Eq.

(16.3), Eq. (16.8) andEq. (16.14)whereS,P and the cutoff are ultimately determined

by the divergence of smax, itself a consequence of the growing correlation length,

x � ðsmaxÞ1=Df � ð pc � pj j�1=sÞ1=Df � pc � pj j�n; n ¼ 1

sDf

: ð16:17Þ

The correlation length can be viewed as a measure of the granularity of the

emerging sea of clusters, which coarsens appreciably with increasing p, cul-

minating, at the percolation threshold, in the appearance of a correlation length

comparable to the finite size, L, of the system itself.

16.2 Scaling relations

We have thus far characterized the percolation process by the divergence of

several quantities described by a host of yet unknown critical exponents

ðt; n; b; g; s;Df Þ. What can we say about the actual values these exponents

assume? In this section we show how the necessity that the percolation

transition proceeds in a continuous fashion through the threshold region places

constraints on what value these exponents can assume. These constraints

appear in the form of relationships between the exponents that limit us to just

two, truly unique, exponents for any given dimension.

We have seen that the percolation threshold marks a unique situation in

which the system is delicately balanced between two states. One of these is just

below pc, where a spanning cluster is not yet present but a self-similar

distribution of large finite clusters (with fractal shapes) is poised to complete

the long-range connectivity of the lattice. The other is just above pc, where a

spanning cluster has now appeared and is rapidly consolidating other clusters

into its structure. Above the threshold, the mass of this spanning cluster

is given as,
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sabove pc
max / PLd; ð16:18Þ

for a lattice containing Ld sites. Just below the threshold, P ¼ 0, and, although

the spanning cluster does not “officially” exist yet, there is at least one very

large cluster whose mass is given by Eq. (16.16) as, sbelow pc
max / xDf . Just at the

threshold,

sbelow pc
max ¼ sabove pc

max ;

and, because x ! L in this limit,

xDf � Pxd: ð16:19Þ

Since P � Dpb and x � Dp�n (where Dp 	 p� pcj j), this matching requires

that

Dp�n½ �Df � Dpb Dp�n½ �d;

or,

Df ¼ d � b=n: ð16:20Þ

This last equation is an example of a scaling relation: an expression relating

different critical exponents. Other scaling relations can be determined (Ex. 3)

where one finds that, aside from the dimension of the lattice, it suffices to know

only two critical exponents in order to determine all of the rest.

16.2.1 Finite-sized scaling

We need only determine two of the critical exponents. But how might these

unknown exponents be determined? Naively, one would think that we could

just measure them experimentally by performing the percolation repeatedly on

a computer-generated lattice. However, the exponents determined in this way

turn out to be sensitive to the size of lattice we use, and will not in general reflect

the “true” exponents associated with an infinite-sized lattice. Instead, finite-

sized scaling provides a mechanism for extrapolating the features of percolation

found on a finite lattice to that which would occur on an infinite lattice.

Suppose, as illustrated in Fig. 16.5, we conducted the percolation scenario on

an infinite lattice to some fraction p < pc, but chose to partition this space into

sub-lattices of size L ¼ x. For the original lattice (L¼1) at p< pc, L < x, and

so a spanning cluster is not present and P L ¼ 1ð Þ ¼ 0. However, for the

partitioned lattices (L � x), half will have a spanning cluster and half will not.

For these,P L � xð Þ � 0 such as would occur when p� pc. If the sub-lattices are

further partitioned to ones in which L < x, almost all will contain a spanning

cluster that is reasonably well developed with P L < xð Þ > 0, as occurs when

p > pc. What we have achieved by this partitioning is a percolation transition

caused, not by the growth of the correlation length, but by the shrinking of the
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system size in relation to a fixed correlation length. All of this suggests

that, when dealing with a finite system, we must generalize P(p) to include an

implicit dependence on the finite size of the system in relation to the correlation

length:

PðpÞ ) Pðp; LÞ: ð16:21Þ

What is the likely form for P(p,L)? Because of the inherent self-similarity,

we might anticipate a power law dependence and, since the percolation

illustrated in Fig. 16.5 transpires as L decreases, an appropriate form would

be P(L) � L�A, where A is some, yet undetermined, exponent. But, as we saw

for the cluster mass distribution, there are limitations to self-similarity when-

ever the length scales exceed the correlation length. These limitations are

incorporated by introducing a cutoff function (also referred to as a scaling

function) and so we anticipate,

Pðp; LÞ � L�Af ðzÞ; z ¼ L=x ¼ LDpn: ð16:22Þ

The exponent Amust now be set in such a way that lim
L!1

Pðp; LÞ � L0Dpb, and

becomes independent of L. For this we need f ðzÞ ¼ zb=n or A = b/v. Then,

Pðp; LÞ � L�b=nf ðLDpnÞ: ð16:23Þ

The utility of this result lies in its applicability to computer simulations

conducted on lattices of sequentially increasing size L near pc. By plotting

P(L) against L on a double logarithmic scale, the resulting slope provides

a direct determination of the ratio of two “true” (i.e. L ¼ 1 lattice)

x

Figure 16.5 Percolation conducted on an infinite lattice is arbitrarily partitioned into very many smaller

systems of length L. The presence or absence of a spanning cluster in these smaller systems

will depend on the size of the partitioning relative to the correlation length, x.
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critical exponents. By similar reasoning, the L-dependence of other quantities,

such as the average cluster mass,

Sðp; LÞ � Lg=nf ðLDpnÞ; ð16:24Þ

can be employed to obtain other exponents.

16.2.2 Renormalization

Clearly an experimental route to determining the critical exponents is available

in the form of finite-sized scaling. But are there any theoretical approaches?

One that appears to work well is known as renormalization group theory.

While we only develop it here at a conceptual level, renormalization group

theory has been widely applied to a variety of phenomena, well removed from

condensed matter theory, including nuclear physics.

Again, the approach centers on exploiting the inherent self-similarity pre-

sent. As a familiar example, consider once more the geometrical fractal shown

in Fig. 16.6, known as a Sierpinski gasket. Suppose we “renormalize” the

gasket on the left of the figure by replacing or “condensing” a cell of three

smallest triangles to form a single larger triangle. The result (shown on the

right in the figure) appears with its self-similar structure intact. Indeed, if we

took the gasket on the right and rescaled it down by a factor of two in size, it

would identically replace any of the three large triangles that make up the

original gasket. This is the nature of self-similar structures.

Now consider a percolation lattice, like that illustrated in Fig. 16.7, in which

a group of bd ¼ 9 sites (or cells) are combined to form a single super cell. If we

(a) (b)

original gasket renormalized gasket

Figure 16.6 An illustration of the renormalization approach for a self-similar Sierpinski gasket. The left-hand

gasket (a) is partitioned (dashed lines) into cells containing four tiny triangles, as emphasized in the

topmost triangle. The cell emphasized contains three solid triangles and one (inverted) vacant

triangle and is condensed to appear in the renormalized gasket (b) as a single solid triangle. Some of

the cells in the left gasket contain four vacant triangles and are condensed to produce a

corresponding vacant triangle in the renormalized gasket.
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are at p ¼ pc, where self-similarity is present at all length scales (nS � s�t),

then we anticipate that condensing the cells of the original lattice on the left to

form the supercells of the lattice on the right should (like the Sierpinski

example) retain the inherent structure.

The rules under which a set of cells in the original lattice is condensed are

somewhat arbitrary, but here we might take it to mean that, if the set of bd cells

contains a cluster that spans the set, its corresponding super cell will be an

occupied site. However, if the set of original cells does not contain a spanning

cluster, the super cell will be labeled unoccupied.

For the original lattice, x / Dp�n. For the renormalized lattice,

x / b Dp0ð Þ�n
; ð16:25Þ

where p0 is generally different from p except just in the limit that p approaches

pc, where p ¼ p0 ¼ pc. Because we are near p ¼ pc, we demand that in either

lattice the correlation length should still be comparable to the overall lattice

size and hence identical for each lattice,

Dp�n ¼ b Dp0ð Þ�n
: ð16:26Þ

This then implies that the exponent is given by,

n ¼ log b

logðDp0=DpÞ : ð16:27Þ

As an example of applying the renormalization technique to percolation, we

consider site percolation on the triangular lattice shown in Fig. 16.8. Sites of

the original lattice are depicted by circles, three of which (those at the corners

of the shaded triangles) are to be condensed to form a super lattice depicted by

bd

(a) (b)

Figure 16.7 (a) Percolation on a d-dimensional lattice is partitioned into supercells of length b, each

containing bd subcells. (b) Under a renormalization operation, each supercell in the left-hand

figure is assigned an occupancy. In this example, a supercell is occupied if its subcells contain a

cluster that spans either vertically or horizontally across the supercell.
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the squares. For the super lattice, p0 is the probability that any arbitrary site of

the super lattice is occupied. Likewise, p is the probability that any arbitrary

site of the original lattice is occupied, while 1-p is the probability that the site is

vacant. We consider a triplet of original sites to contain a spanning cluster if at

least two of the sites are occupied. The probability for all three being occupied

is p3 and for any two it is p2(1-p) times the number of possible permutations.

Hence the probability that the triplet produces an occupied super cell is,

p0 ¼ p3 þ 3p2ð1� pÞ: ð16:28Þ

At p ¼ pc, p ¼ p0 and there are three solutions for Eq. (16.28) at p* ¼ 0, 0.5

and 1. Two of these solutions (also known as fixed points) are trivial and reflect

the obvious result that, in the case of p ¼ 0 or p ¼ 1, the condensing will lead

to all supercells empty or occupied, respectively. The unique solution occurs at

p* ¼ ½, which happens to coincide with the value of pc obtained experi-

mentally (see Table 16.1).

To determine the exponent for our triangular example using Eq. (16.27), we

first express p0 as a Taylor expansion about the unique solution p* ¼ pc,

p0 � pc þ
dp0

dp

�

�

�

�

pc

ðp� pcÞ ¼ pc þ 6pcð1� pcÞ½ �ðp� pcÞ: ð16:29Þ

p4
non-spanning3p 2(1–p)

Figure 16.8 A triangular lattice of circles is renormalized to the larger triangular lattice of squares. In performing

this renormalization, a cell of the new lattice is occupied if the three surrounding sites of the

original lattice produce a spanning cluster either by containing two or three occupied sites

(lower figure). The probability for such clusters to occur in the original lattice is indicated

in each case.
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For pc ¼ ½, we find that

Dp0=Dp � 6pcð1� pcÞ½ � ¼ 3=2: ð16:30Þ

Including this result in Eq. (16.27) together with our renormalization factor

b2 ¼ 3, we obtain,

n ¼ logð
ffiffiffi

3
p

Þ
logð3=2Þ ¼ 1:355; ð16:31Þ

which is favorably close to the experimental value of 4/3 (see Table 16.2). In

general, the renormalization approach improves when a larger number of original

cells are condensed (e.g. b2> 3 in our case of a triangular lattice), but of course the

development of p0 corresponding to Eq. (16.28) then becomesmore cumbersome.

16.2.3 Universality and the mean field limit

A summary of the critical exponents for percolation is provided in Table 16.2.

It is interesting to note that the exponents only depend on the dimension

of the lattice. They do not depend upon the type of lattice or whether the

percolation is of the site or bond variety. This invariance is referred to as

universality and is a recurrent feature of phase transitions in condensed

matter physics.

Also included in Table 16.2 are the exponents determined (analytically) for

the so-called Bethe lattice. A Bethe lattice is formed by repeated branching of a

site to z adjacent sites, as illustrated in Fig. 16.9 for z ¼ 3. The Bethe lattice is

not a conventional sort of lattice because none of the branches ever intersect

(as they would in say a square lattice), but rather extend indefinitely without

crossing each other. Such a lattice is clearly impractical as it would require

sites to become infinitely crowded. Nevertheless, it has an inherent connectiv-

ity that can be analyzed in a percolation scenario.

Particularly significant is that the Bethe lattice mimics the behavior of a

conventional lattice of very high (infinite) dimension. For conventional lattices

of size L, the volume increases as,

Figure 16.9

The Bethe lattice for

coordination number z ¼ 3.

Table 16.2 Critical exponents for percolation in several dimensions (data obtained from Jan,
Hong and Stanley (1985) and Zallen (1983).)

Quantity Exponent d ¼ 2 d ¼ 3 d ¼ 4 d ¼ 5 Bethe

P � Dpb b 0.14 0.39 0.56 0.67 1

S � Dp�g g 2.39 1.8 1.43 1.22 1

x � Dp�n n 1.33 0.9 0.64 0.51 1/2

ns � s�t t 2.05 2.2 – – 5/2

Rs � s1=Df Df 1.9 2.5 3.12 3.69 4

D � Dpm m 1.3 2.0 – – 3
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Volume / Ld ;

while the surface increases as,

Surface / Ld�1:

Thus the surface to volume ratio of a conventional lattice decreases as,

Surface

Volume
/ L�1 / Volumeð Þ�1=d: ð16:32Þ

However, for the Bethe lattice we see that each new generation of branches

produces more sites than the previous generation. So after any generation,

the majority of the total number of sites resides on the surface and

the surface to volume ratio approaches a constant. According to

Eq. (16.32), this would correspond to a conventional lattice of infinite

dimension (d ¼ 1).

In Fig. 16.10 we have plotted the exponents of Table 16.2 as a function of

the dimension. Two things are apparent. The exponents exhibit a systematic

variation with dimension and all approach some fixed, d-independent, value

for d � 6. It would seem that there is some sort of “homogenization” of the

percolation process occurring as the dimension reaches d ¼ 6, in which the

divergent features of the transition assume some simple, innocuous limit. This

limit is often referred to as the mean field limit in connection with a similar

“homogenization” of the critical exponents associated with thermal and mag-

netic phase transitions, to be discussed in more detail in the next chapter.

There, sites are associated with objects (e.g. magnetic spins that are either up

Mean Field 

Limit

Figure 16.10 Critical exponents of percolation plotted against the lattice dimension to illustrate the approach

to so-called mean field values above a critical dimension d � 6. (Data from Jan, Hong, and Stanley

(1985) and Zallen, 1983.)
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or down) that interact with one another in a pairwise fashion. However, in the

mean field limit, these discrete, site-to-site, interactions are approximated by a

homogeneous “average” interaction similar to the interaction of the object with

an external field (a mean field).

16.3 Applications of percolation theory

16.3.1 Orchard blight and forest fires

As mentioned in the introduction, percolation concepts are relevant to a wide

field of processes found in science. As a first example, illustrating the practical

applications of percolation theory, we consider the predicament faced by a fruit

farmer who wishes to plant an orchard of fruit-bearing trees. We suppose the

trees are planted on a square grid with a lattice spacing a. Farmland is

expensive and the farmer strives to maximize his land use by planting the

trees close together. However, he also recognizes that there is a risk that if one

tree becomes diseased, the disease is likely to spread to all the other trees and

destroy the entire orchard. Obviously, if the branches of the trees touch each

other, the likelihood of disease transfer is very high but this probability for

disease transfer should fall off in some exponential fashion at larger separ-

ations, as shown in Fig. 16.11.

This is a bond percolation problem on a square lattice, since the probability

for disease transfer is equivalent to the probability that a bond has formed

between two trees (i.e. sites). From Table 16.1, we see that pc ¼ 0.50 for this

bond percolation scenario. Thus, if the farmer plants the trees with a spacing

larger than the critical spacing ac for which disease transfer probability is 50%,

the likelihood of a devastating wipeout of some large fraction of the orchard is

reduced, while valuable farmland is best utilized. In a fully analogous manner,

this same problem applies to other transfer processes such as the spread of fire

in a forest or the spread of disease among a population.

16.3.2 Gelation

Percolation also provides a suitable model for the process of gelation. No

doubt we are all familiar with the edible gelatin (“Jell-O”), found in many

school cafeterias, that is able to sustain its shape without being entirely rigid.

Gelatin such as this forms when long polymer fibers dissolved in a solvent

begin to form crosslinks between one another to produce an extended network.

Where and when the crosslinks form is a random process and hence the

connectivity of the polymer strands is well accounted for by percolation theory.

In gelatin, the crosslinking occurs with cooling and can be reversed by

heating. For this reason, the edible gelatin we are most familiar with is known
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as a reversible or physical gel. On the other hand, a similar gelation process

occurs in epoxy resins, where two components (the epoxy and the hardening

agent) are mixed and chemically react to produce permanent crosslinks over

time at a fixed temperature. These crosslinks are thermally stable and epoxy

resins are an example of what are known as irreversible or chemical gels.

In either case, crosslinks form randomly below the percolation threshold

(also known as the gel point) and the solution, known as a sol, consists of small

clusters of crosslinked material. As a result of the crosslinking the sol becomes

progressively less fluid and the viscosity increases. The increase in viscosity is

most acute near the threshold, where it is often observed to diverge in a power

law manner of the form,

Z � ðpc � pÞ�k : ð16:33Þ

Just above the gel point, the system is referred to as a gel. Here, low frequency

shear waves can be supported by the extensive network of crosslinked strands and

the material begins to assume the properties of a solid. With increasing reaction

above the gel point, the network becomes stronger and the shear modulus

increases towards a limiting maximum value in a power law of the form,

G � ðp� pcÞt: ð16:34Þ

Although much of the process of gelation can be understood conceptually in

terms of percolation theory, this cannot predict the values of the two exponents

(k, t) that characterize the divergent trends in viscosity and shear modulus. These

a

Probability of 

disease transfer

ac

pc
a

Tree

Figure 16.11 Upper right-hand figure shows trees planted in an orchard in the form of a square lattice of spacing

a. Lower left-hand figure illustrates how the likelihood of disease transferring from one tree to

another might depend on their separation. For separations greater than ac, this probability resides

below the corresponding bond percolation threshold and limits the spread of disease to a small

number of finite clusters of trees.
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two quantities represent dynamical aspects that are not directly addressed by

percolation theory, which is itself only a model for structural connectivity.

16.3.3 Fractal dynamics: anomalous diffusion

Because percolation theory addresses mainly the structural features of a

percolating system, our interpretations of dynamical processes associated

with a percolating system must involve the introduction of additional

assumptions regarding time-dependent parameters. New exponents, like k

and t, discussed for the sol–gel transition above, arise and are of a dynamical

origin. Although values for these new exponents are often not predicted,

scaling arguments can be applied, much like the finite-sized scaling dis-

cussed in connection with Eq. (16.22), to forge insightful scaling relation-

ships between the various relevant exponents. We anticipate then that we

could express any dynamical quantity, Q(p,t), in a scaling form analogous

with Eq. (16.22),

Qðp; tÞ ¼ tAf ðzÞ; z ¼ t=t ¼ tDpx; ð16:35Þ

in which time scales are placed in reference to a characteristic time scale (t)

instead of length scales in reference to a characteristic length (x). A good

example of this is the analysis of the anomalous diffusion occurring on a

percolating lattice.

Diffusion is a dynamical process and as we have learned in Chapter 9, can

be understood in terms of the motion of a walker performing a random walk.

For an unrestricted space, we saw that the mean squared displacement of the

walker evolves linearly in time:

r2ðtÞ
	 


¼ Dt; ð16:36Þ

where D is the diffusivity. But what happens if the walk is restricted to those

occupied sites of the percolating lattice?

Imagine yourself as the walker who parachutes down onto any one of many

large clusters that have formed just below pc. With dice in hand, you begin

walking randomly. However, the space you have available to walk in is a

fractal filled with branches upon branches forming a tenuous pathway, not

unlike a labyrinth. You make some headway at first, but before too long you

wander down a dead end that requires many rolls of the dice in order to

randomly retrace your steps. Alternatively, you may find that you are located

in a smaller cluster connected to other clusters only by a narrow passage.

Again, to migrate through this bottleneck between the two regions requires

many rolls of the dice and curtails growth of the mean squared displacement at

long times. Instead of advancing linearly with time, as in Eq. (16.36), we find

that the walk proceeds in an anomalous, sub-diffusive manner described by a

power law of the form,
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r2ðtÞ
	 


/ t1�a: ð16:37Þ

Of course, this advance of the mean squared displacement with time is

limited by the finite size of the cluster, Rs, you happen to land on. While at

short times the mean squared displacement grows according to Eq. (16.37), it

is limited at long times by the extent of the cluster itself,

r2ðt ! 1Þ
	 


s
¼ R2

s : ð16:38Þ

To obtain a robust and meaningful measure of the diffusion present below pc,

we would need to imagine that an army of walkers is parachuted to every

cluster and average their mean square displacement. We would find that each

performs a similar sub-diffusive walk at short times, but differ in the limiting

mean squared displacement they ultimately attain, depending on the size of the

cluster they happen to inhabit. The average of this limiting mean square

displacement is given by,

R2
s

	 


¼
X

s

snsR
2
s �

ð

1

0

s s�te�s=smax

� �

s2=Df

� �

ds; ð16:39Þ

where again, sns is the probability that a given lattice site belongs to a cluster of

mass s. Using techniques we employed previously, one finds that

R2
s

	 


� Dpb�2n: ð16:40Þ

The average mean squared displacement of the walker is illustrated in

Fig. 16.12 for clusters below the percolation threshold. At short times, the

walker explores a fractal landscape and the mean squared displacement

evolves in a sub-diffusive manner. However, depending on the level of occu-

pied sites p, there is a crossover from this anomalous diffusion to a fixed, time-

independent mean squared displacement, R2
s

	 


� Dpb�2n, found at very long

times. That is,

r2ðtÞ
	 


¼ t1�a; t < t�
R2
s

	 


� Dpb�2n; t > t�:

�

ð16:41Þ

As can be seen from the figure, this fixed value diverges on approach to pc and

the crossover point occurs at a characteristic time,

t� � Dp b�2nð Þ=ð1�aÞ; ð16:42Þ

which also diverges on approach to the transition. Thus, just at pc, the

anomalous diffusion of Eq. (16.37) is unlimited.

Alright, now what happens above pc? Imagine we parachute a walker who

(mostly likely) lands on the spanning cluster. Very near pc, this cluster still

retains much of its fractal character, but as p increases, more of the dead ends

become interconnected and the bottlenecks become less constricting due to the
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accretion of mass onto the spanning cluster. For short distances, the walker still

explores a fractal landscape and the mean squared displacement starts off as

before (Eq. (16.37)). However, at much longer distances, the reduction of dead

ends and bottlenecks allows the mean squared displacement to increase in a

normal, linear manner, but with a diffusivity that decreases as p approaches pc
from above,

r2ðtÞ
	 


¼ t1�a; t < tþ
DðpÞt � Dpm½ �t; t > tþ:

�

ð16:43Þ

Again, from consideration of Fig. 16.12, we can conclude that

tþ � Dp�m=a; ð16:44Þ

which again diverges on approach to pc from above the threshold.

We see above that the dynamics are underscored by two time scales, given

by Eq. (16.42) and Eq. (16.44). As we approach the percolation threshold, we

need both time scales to be coincident so that the dynamic pattern (Eq. (16.41))

seen below pc will join smoothly with that (Eq. (16.43)) above pc. Thus the two

exponents describing each time scale should match, and we can obtain the

scaling relationship,

m ¼ a

1� a

� �

2n� bð Þ: ð16:45Þ

An alternative route to this same scaling relationship is to apply the scaling

approach introduced at the start of this section (see Eq. (16.35)). In this

approach, we assume a scaling form for the mean squared displacement,

r2ðp; tÞ
	 


�¼ t1�af�ðzÞ; z ¼ tDpx; ð16:46Þ

∆p µt1

∆p b−2nt 0

t1−a

τ+τ−

log r 2

log t

p < pc

p > pc

Figure 16.12 Diffusion on a percolating lattice displays anomalous diffusion at short times. Below the

threshold, the mean squared displacement of a random walker is limited at long times (greater

than t�) by the finite cluster size. Above the threshold, the random walk returns to normal

diffusion at long times (greater than tþ).
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where x is some, yet undetermined scaling exponent. At p > pc, we seek a

scaling function fþðzÞ that in the limit of large z will approach the desired

r2ðp; t ! 1Þ
	 


þ¼ Dpmt1. For this situation we must choose fþðzÞ � zm=x,

so that

x ¼ m=a: ð16:47Þ

At p < pc, we seek a scaling function f�ðzÞ that in the limit of large z will

approach the desired r2ðp; t ! 1Þ
	 


�¼ Dpb�2nt0. For this situation, we must

choose f�ðzÞ � za�1, so that

x ¼ ð2n� bÞ=ð1� aÞ: ð16:48Þ

Again, we find in combining Eq. (16.47) with Eq. (16.48), the same scaling

relation of Eq. (16.45).

Summary

c Percolation theory considers the connectivity of a lattice with a frac-

tion, p, of lattice sites randomly occupied. Bond percolation and site

percolation are two common variants of the problem.

c As the occupancy increases, clusters develop with a self-similar

distribution.

c At the percolation threshold, pc, a continuous pathway (spanning

cluster) forms that connects one side of the lattice to the other.

c The percolation threshold depends upon the lattice geometry and type

(bond or site), but the critical exponents are universal and only depend

on the dimension.

c Finite-sized scaling and renormalization are two approaches to deter-

mining critical exponents.

c Anomalous diffusion refers to the properties of a random walk con-

ducted on a self-similar percolating lattice, and allows percolation

theory to be extended to dynamical processes.

Exercises

16.1. Make a histogram of ns(s) for the situation shown in Fig. 16.2c. How

does this histogram compare to ns(s) given by Eq. (16.3)?

16.2. Show how Eq. (16.39) becomes Eq. (16.40).
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16.3. Show that all of the scaling exponents can be expressed in terms of just

two together with the dimension, d, by expressing n ¼ f ðs; t; dÞ and

Df ¼ gðs; t; dÞ.
16.4. Apply renormalization to the square lattice with bd ¼ 4. In condensing,

take a set of four original cells to contain a spanning cluster only if it

produces a connection from left to right (not top to bottom). Show that

the percolation threshold occurs at pc ¼ 0.62 with n ¼ 1.635. Comment

on this result in the light of the true values in Table 16.1.

16.5. Consider a Bethe lattice with branching z. Show that at the end of n

branching generations,

(a) the volume (equal to the number of sites) is given by,

Volume ¼ 1þ z
ðz� 1Þn � 1

ðz� 2Þ

� �

;

(b) the surface (equal to the number of sites on the outermost layer) is

given by,

Surface ¼zðz� 1Þn�1;

(c) and that, for large numbers of generation (n), the surface to volume

ratio is given approximately by,

Surface

Volume
� z� 2

z� 1
:

16.6. A forest is modeled by pine trees (with branches spanning a diameter

of D ¼ 10 feet each) laid out on a 2D hexagonal (i.e. triangular) lattice

of spacing a > D. The probability that an ember originating from any

given tree will be sufficiently hot to ignite branches of another tree a

distance r away (measured from tree center to tree center), is given as,

PðrÞ ¼ 1� tanh2ðr=4DÞ
� �

. For this situation, determine the minimum

spacing ac for which percolation of a forest fire would be likely to

occur.

16.7. As mentioned in the text, both the viscosity and shear modulus display

power law dependencies on Dp, during the sol–gel transition. However,

these two quantities are also frequency dependent and near the pc,

G � oZ � ou. The characteristic relaxation rate for a viscoelastic

material is, oC ¼ G1=Zo � Dpt1þko , and is seen to vanish at the perco-

lation threshold. Let us attempt to introduce the frequency dependence

by a scaling ansatz of the form:

G
ðoÞ ¼ GðoÞ þ ioZðoÞ ¼ G1ouf�ðo=oCÞ where at p > pc;

GðoÞ ¼ G1oufþðo=oCÞ � G1o�1
Dpto ; o < oC

G1o0
Dpt1 ; o > oC;

�

and at p < pc,
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ZðoÞ ¼ G1ou�1f�ðo=oCÞ � G1o0
Dpko ; o < oC

G1o1
Dpk1 ; o > oC:

�

(a) Develop appropriate forms for the piecewise scaling functions f�ðzÞ
required to match the above limiting frequency dependencies.

(b) Use these scaling functions to obtain the following scaling relations:

ko ¼ t1 u�1 � 1
� �

; to ¼ t1 u�1 þ 1
� �

; and k1 ¼ t1 2u�1 � 1
� �

:
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17 Mean field theory and renormalization

Introduction

Our discussion of critical phenomena surrounding a second-order phase transition

has thus far focused only on qualitative features. We have now examined three

systems, fluids, magnets and random percolation, each of which displays an

abruptly sharp transition from a less ordered to a more ordered phase as the

respective transition point is encountered. Each shows a similar pattern of develop-

ing structure just in advance of the critical point. Fluctuations in the respective order

parameter display a self-similar structure that is limited only by a single relevant

length scale, the correlation length x, which diverges on approach to the transition

point. For fluids and magnets, this structure arises from inherent fluctuations that

are amplified by either a diverging compressibility or susceptibility, respectively.

In this chapter, we explore more quantitative, theoretical approaches taken to

understand the features of second-order phase transitions. The simplest of these

are themean field theories, in which the pairwise interaction (needed to produce a

phase transition) is introduced in the form of an average field. In this approach, the

effects of the growing fluctuations of the order parameter near the critical point are

ignored. Although the mean field approach does meet many of the requirements

and does predict divergences of certain quantities near the transition, the critical

exponents predicted by the theory do not match those seen experimentally.

Obtaining correct exponents requires a more advanced approach involving renor-

malization techniques that exploit the self-similar structure of the fluctuations near

the critical point and allow all of the various critical exponents to be inter-related,

such that knowledge of any two yields all the others.

17.1 Mean field theory

17.1.1 The mean field approximation

In this chapter we want to examine theoretical models that might account for

the second-order phase transitions of both the fluids and magnetic materials

which we introduced in Chapter 15. We begin with what are known as mean

field theories and consider (in parallel) two primary examples of the mean
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field approach: the van der Waals model for fluids and the Ising model for

magnetic materials.

In order for a phase transition to exist, we must have attractive forces

between the particles of the system that will allow them to stick together. At

a microscopic level, these attractive forces are described by pairwise inter-

actions between any two particles and provide for a lowering of the free

energy, which as we learned in Chapter 15, is fundamentally responsible for

phase changes. For fluids of the van der Waals type, the fundamental inter-

action is the van der Waals or Lennard-Jones potential,

uðrijÞ ¼ 4e
s

rij

� �12

� s

rij

� �6
( )

;

introduced in Chapter 3, which describes the potential energy stored by two

particles separated by a distance rij. For magnetic materials, the fundamental

interaction is the exchange interaction introduced in Chapter 4,

uðrijÞ ¼ �2JexðrijÞ~Sið0Þ �~SjðrijÞ; ð17:1Þ
which describes the stored energy associated with two adjacent electron spins

separated by a distance rij. For both cases, the total ensemble-averaged energy

stored in the interaction is obtained by summing over all pair combinations. For

isotropic systems, we found in Chapter 3 that this energy can be expressed as,

Utoth i ¼
X

i;j

uðrijÞ
* +

¼ N

2

X

j¼2;N

uðr1jÞ
	 


: ð17:2Þ

The Ising model is a simplified version of a ferromagnet that incorporates

two major restrictions. Firstly, the magnetic moments are assumed to arise only

from the electron spin (i.e. J¼ S and L¼ 0), so that the moment is proportional

to the electron spin. In this case, the exchange interaction in Eq. (17.1) can then

be expressed alternatively as,

uIsingðrijÞ ¼ �2~JexðrijÞ~mið0Þ �~mjðrijÞ; ð17:3Þ

where the proportionality constant has been incorporated into ~JexðrijÞ. Sec-
ondly, the magnetic moments (or the spins) are restricted to point in only one

of two directions: up or down. For the Ising model containing N spins, we can

thus express the total energy as,

Utoth i ¼ �N

2

X

j¼2;N

2~J exðr1jÞ ~m1ð0Þ �~mjðr1jÞ
	 


¼ �N

ð

1

b

~J exðrÞGðrÞ n d3~r;

ð17:4Þ

where n is the number density and the quantity in brackets is recognized as the

moment–moment (or spin–spin) correlation function, GðrÞ ¼ ~mð0Þ �~mðrÞh i,
first encountered in Chapter 4.
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In a similar manner, the total energy for a fluid is given (see Eq. (3.23)) as,

Utoth i ¼ N

2

ð

1

b

gðrÞuðrÞ n d3~r; ð17:5Þ

where u(r) is the van der Waals interaction and g(r) is the pair distribution

function which describes the average spatial variation of the density from one

point to another.

Now herein lies our dilemma. To obtain the total internal energy, which

we need to evaluate the free energy, we must integrate a quantity over all

space that is inherently unstable just near the critical point. As we learned in

Chapter 15, strong fluctuations develop near the critical point and so both

GðrÞ and g(r) will be difficult to evaluate analytically there. Mean field

theory then enters as an approximation scheme for dealing with this prob-

lem, by ignoring the fluctuations altogether and replacing them by average

(mean) values. As an example, for the Ising model, the interaction between

the central spin ~m1ð0Þ and another spin ~mjðrÞ is replaced by a separation-

independent average magnetic moment, ~mjðrÞ ¼ ~mh i ¼ ~M=n, proportional to

the magnetization. This allows the internal energy of Eq. (17.4) to be

expressed as,

Utoth i=N ¼ �~m1ð0Þ � l~M ¼ �~m1ð0Þ � ~Hint; ð17:6Þ

where,

l ¼
ð

1

b

~J exðrÞd3~r; ð17:7Þ

is a material-dependent parameter that provides a measure of the interaction

strength. In this approach, the interaction of a moment with its neighbors is

replaced by the interaction of the moment with an internal field, ~Hint ¼ l~M ,

and this explains why the approximation is termed “mean field”.

In a similar fashion, the developing density fluctuations for a fluid near the

critical point are ignored. In the mean field approach, the density is treated as

spatially uniform so that g(r) ¼ 1 and

Utoth i ¼ �N n a ¼ �N2

V
a; ð17:8Þ

where,

a ¼ 1

2

ð

1

b

uðrÞd3~r

�

�

�

�

�

�

�

�

�

�

�

�

ð17:9Þ

provides a similar measure of the attractive interaction.
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17.2 The mean field equation of state

17.2.1 Fluids: the van der Waals model

Following the thesis work of van der Waals, we now apply the mean field

approximation to a fluid. Beginning with the non-interacting equation of state

(i.e. the ideal gas law), we imagine what happens to a gas of given entropy

when the interaction is instantly introduced. When the particles are suddenly

allowed to attract one another, their impacts with the walls of the container are

reduced. Using the first law of thermodynamics, together with Eq. (17.8), one

can show (Ex. 1) that the pressure decreases by an amount,

DP ¼ �N2

V 2
a: ð17:10Þ

In addition to this reduction in pressure, van der Waals also modified the ideal

gas law to adapt it to real particles with a finite volume b. Together, these two

changes result in the van der Waals equation of state,

P ¼ NkBT

ðV � NbÞ �
N 2

V 2
a: ð17:11Þ

Examples of the isotherms produced by Eq. (17.11) are shown in Fig. 17.1. At

high temperatures, the van der Waals model produces behavior consistent with

a

g
f

e

d

c

b

0.9Tc

1.1Tc

Tc

A

B

11 2 3
V/Vc

0
0

1

2

P/Pc

Figure 17.1 The PV diagram for five isotherms of the van der Waals model (T/Tc ¼ 0.9, 0.95, 1, 1.05 and 1.1).

Above Tc, each isotherm is single valued but becomes multivalued below the critical

temperature. As an example, the isotherm for 0.9 Tc exhibits three values of volume (points

labeled b, d and f) associated with a single pressure.
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the non-interacting ideal gas law, as expected at temperatures above Tc, where

thermal agitation renders the attractive interaction ineffective. As the tempera-

ture approaches Tc, a distortion of the isotherm develops in which the slope

tends toward zero at some special Vc. Below Tc, the isotherms assume a

multivalued property wherein three volumes are associated with any P < Pc.

The region below Tc corresponds to the region of liquid–vapor coexistence

and, to better evaluate the meaning behind these multivalued isotherms, we

consider the free energy of the van der Waals model. Recalling that

dG ¼ �SdT þ VdP, we have for a fixed temperature,

@G

@V

� �

T

¼ V
@P

@V

� �

T

¼ � NkBTV

ðV � NbÞ2
þ 2

N 2

V 2
a: ð17:12Þ

Integrating this over volume for the same fixed temperature (Ex. 4) provides

the free energy,

G ¼ �NkBT lnðV � NbÞ þ ðNkBTÞðNbÞ
ðV � NbÞ � 2

N 2

V
aþ cðTÞ; ð17:13Þ

where c(T) is the integration constant, which could depend upon what fixed

temperature is being considered. When the free energy is plotted against

pressure (by evaluating G from Eq. (17.13) and P from Eq. (17.11) for a series

of volumes at fixed temperature) we find, as shown in Fig. 17.2, that it

produces an unusual triangular loop whenever T < Tc. Several points located

in the figure are mapped to corresponding points on the isotherm in Fig. 17.1.

Now because the second law dictates that the system should adopt the phase

g

b, f

e

d

c

a

T = 0.9Tc

0.6 0.7 0.8 0.9

P/Pc

0.50.4

F
re

e
 E

n
e
rg

y

Figure 17.2 A plot of the Gibbs free energy obtained from the van der Waals model (Eq. (17.13)) plotted against

the pressure for a fixed temperature (T ¼ 0.9Tc) below the critical point. Because the total

change in free energy in the shaded loop must vanish, the two shaded areas shown in Figure 17.1

must be equal. This then provides a convenient method for determining the coexistence curve.
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with the lowest free energy, we see that the system will in fact transition

directly from the gas at point f to the liquid at point b (during which a first-

order phase transition occurs). This transition occurs at a fixed pressure, as

indicated by the points f and b in Fig. 17.2. Furthermore, because the net

change in free energy around the triangular loop of Fig. 17.2 must vanish,

ð

loop

dG ¼
ð

loop

VdP ¼ 0; ð17:14Þ

the critical pressure can alternatively be determined directly from the PV

diagram as that fixed pressure for which the two areas (A and B in Fig. 17.1)

are equal. Similar analysis of other isotherms thus allows the coexistence dome

to be mapped out.

17.2.2 Magnets: the Ising model

In the Isingmodel, the spins are restricted to be directed either up or down and so too

is the externalfield. Consequently, the total interaction between an externalfield and

a system of N spins, configured with Nu spins up and Nd spins down, is simply,

U ¼ mH Nd � Nuð Þ ¼ mH N � 2Nuð Þ; ð17:15Þ

while the net magnetization is

M ¼ n mh i ¼ n
m Nu � Ndð Þ

N
¼ �n

U

NH
: ð17:16Þ

Before we can introduce the mean field interaction of Eq. (17.6), we must first

determine the equation of state that describes the Ising model in the absence of

particle–particle interactions. That is, we first need the corresponding “ideal

gas law” for the Ising system. Our point of entry is the entropy of the spin

system, given by statistical mechanics as S ¼ kB lnW , where the multiplicity,

W, represents the number of possible ways that the N spins can be configured

such that a given situation of Nu and Nd is achieved.

The Ising model is an example of a two-state system. Like a coin that can

assume either heads or tails, the magnetic moment can only assume up or

down. For such a system, the number of microstates associated with a given

macrostate of Nu and Nd is given by,

W ¼ N !

Nu!Nd !
¼ N !

Nu! N � Nuð Þ! : ð17:17Þ

By way of a validation of this result, consider the small system of only N¼ 4

spins, illustrated in Fig. 17.3. For this small system, there are a total of 24 ¼ 16

possible arrangements of the spins that have been divided into five groups

according to the values of Nu and Nd. For each group, one can see that

Eq. (17.17) correctly predicts the number of configurations in each macrostate.

Nu= 4 W4= 1

W0= 1

W3= 4

W2= 6

Nu= 0

Nu= 1

Nu= 2

Nu= 3

W1= 4

(a)

(b)

Figure 17.3

(a) A summary of all the

possible configurations for an

Ising system containing four

spins. These 16 distinct

configurations are divided into

five macrostates according to

the net number of upward spins.

(b) Just one of the 236 ¼ 6.87

� 1010 possible configurations

of an Ising system containing

36 spins.
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Given Eq. (17.17), the entropy is,

S ¼ kB lnW ¼ k lnN!� lnNu!� lnðN � NuÞ!f g
� kB N lnN � Nu lnNu � ðN � NuÞ lnðN � NuÞf g;

ð17:18Þ

where use has been made of Sterling’s approximation, lnN! ¼ N lnN � N , in

this situation of very large N. Because the Ising model is constructed from a

fixed lattice, its volume does not change and from the thermodynamic identity

(dU ¼ TdS � PdV ) we find

T�1 ¼ @S

@U

� �

¼ @S

@Nu

@Nu

@U
¼ � 1

2mH

@S

@Nu

¼ kB

2mH
ln

N � U=mH

N þ U=mH

� �

: ð17:19Þ

Rearranging this, the energy of the non-interacting system is,

U ¼ NmH
1� e2mH=kBT

1þ e2mH=kBT

� �

¼ �NmH tanh
mH

kBT

� �

; ð17:20Þ

and the magnetization, given by,

M ¼ nm tanh
mH

kBT

� �

¼ MS tanh
mH

kBT

� �

; ð17:21Þ

constitutes the Ising equation of state as it relates the three state variables, H,M

and T.

The mean field interaction is easily added in the form of an effective field,

Hint ¼ lM , and in the case of such an interacting Ising system, the equation of

state becomes,

M ¼ MS tanh
m H þ lMð Þ

kBT

� �

: ð17:22Þ

As illustrated in Fig. 17.4, solutions to the equation of state are obtained when the

left-hand side, yL ¼ M , matches the right-hand side, yR ¼ MS tanh mlM=kBTð Þ,
in the case of a vanishingly small external field. One sees that at high temperatures

there is only one solution found at the origin whereM¼ 0. However, below some

critical temperature, there appear two additional solutions (one positive and the

other negative), which correspond, to the partial ordering of spins either up or

down. These two solutions correspond to the upper and lower branches of the

MT – phase diagram (see Fig. (15.12)) discussed in Chapter 15.

17.3 Law of corresponding states

Thus far, both mean field models for fluid and magnetic phase transitions are

performing well. Each produces a transition in which order spontaneously

appears. Next, we inquire as to whether these models conform to a law of
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corresponding states, such that their respective equations of state may be

expressed in an invariant form when scaled by representative state variables

such as p ¼ P/Pc, v ¼ V/Vc and t ¼ T/Tc. For the van der Waals model, these

variables are those at the critical point, which can be derived from the proper-

ties of the critical isotherm,

@P

@V

� �

at C:P:

¼ 0 and
@2P

@V 2

� �

at C:P:

¼ 0: ð17:23Þ

These two conditions, together with the van der Waals equation of state, allow

one to determine (Ex. 2) that

PC ¼ a

27b2
; VC ¼ 3Nb; and kBTC ¼ 8a

27b
: ð17:24Þ

When these values are substituted back into the equation of state, a scaled

form,

P

PC

þ 3
VC

V

� �2
( )

3
V

VC

� �

� 1

� �

¼ 8
T

TC
or pþ 3=v2

� �

3v� 1ð Þ ¼ 8t;

ð17:25Þ

is found and confirms that the van der Waals model exhibits the expected

invariance and that the transition appears the same regardless of the size of the

particles (b) or the degree of attraction (a).

y

T= 1.5Tc

T= 0.7Tc

M

y = M

Figure 17.4 The equation of state for the Ising model. Solid curves represent the right-hand side of

Eq. (17.22) for two cases above and below the critical temperature. The dashed line represents

the left-hand side of Eq. (17.22). At temperatures above the critical temperature, the solutions to

Eq. (17.22) are single-valued (equal to zero). Below the critical point, the solutions become

multivalued with two non-zero values of the magnetization corresponding to the two allowed

directions for aligned spins.
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For the magnetic case, two of the state variables (M and H) happen to be

zero at the critical point. For these two, it is customary to scale instead by the

saturation magnetization (MS) and the corresponding saturated mean field,

respectively,

m ¼ M=MS ; h ¼ H=lMS : ð17:26Þ

From Fig. 17.4, we notice that the critical temperature is characterized by the

isotherm whose slope ( @yR=@Mð ÞjM!0) just equals unity. One can then show

(Ex. 5) that the Ising critical temperature is,

kBTc ¼ lmMS ¼ lnm2: ð17:27Þ

Making these substitutions into the equation of state in Eq. (17.22), one obtains

a scaled form,

m ¼ tanh
h

t
þ m

t

� �

¼ tanh h
t

� �

þ tanh m
t

� �

1þ tanh h
t

� �

tanh m
t

� � : ð17:28Þ

Since our interest resides in features near the critical point that are present in a

vanishingly small external field, we can use the following expansion,

tanhðxÞ ¼ x� 1

3
x3 þ � � � ; ð17:29Þ

to reduce Eq. (17.28) to,

h

t
¼ m� tanhðm=tÞ

1� m tanhðm=tÞ : ð17:30Þ

17.4 Critical exponents

Thus far, the mean field approach is quite successful. In each case, the

introduction of a mean field has produced a phase transition involving a

spontaneous ordering, and one in which the ordering appears identically for

each case regardless of the details of the particles or the strength of the

interaction. In both cases, we see that near the critical transition, the isotherms

become distorted leading to divergences in the compressibility or susceptibility

and the amplification of any order parameter fluctuations present in the system.

Near the critical point, there are a number of power law-dependent proper-

ties including: the compressibility and susceptibility,

wT ¼� 1

V

@V

@P

� �

T

/ Dtð Þ�g1

wm ¼ @M

@H

� �

T

/ Dtð Þ�g2 ;

ð17:31Þ
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the order parameter,

f ¼ 1

2

nl � ng

nC
/ �Dtð Þb1

f ¼ M

MS

/ �Dtð Þb2
ð17:32Þ

and the shape of the critical isotherm,

Dpð Þ / Dvð Þd1

h / md2 ;
ð17:33Þ

where

Dt ¼ ðT � TCÞ=TC ¼ t � 1

Dp ¼ ðP � PCÞ=PC ¼ p� 1

Dv ¼ ðV � VCÞ=VC ¼ v� 1

are scaled variables that describe relative proximity of the critical point. We

now ask, “What do these two mean field models predict for the values of their

critical exponents?”

To evaluate these critical exponents we restrict our interest in the scaled

equations of state to conditions very near the critical point (this corresponds to

p � 1, v � 1 and t � 1 in the van der Waals model and h � 0, m � 0 and t � 1

in the Ising model) and so consider expansions of both Eq. (17.25) and

Eq. (17.30) in these limits. For the van der Waals model, a Taylor expansion

of Eq. (17.25) about v ¼ 1 produces,

p ¼ 4t � 3� 6ðt � 1Þðv� 1Þ þ 9ðt � 1Þðv� 1Þ2 � 3

2
ð9t � 8Þðv� 1Þ3 þ � � �

¼ 4t � 3� 6DtDvþ 9DtðDvÞ2 � 3

2
ð9t � 8ÞðDvÞ3 þ � � � ;

ð17:34Þ

where only terms up to order v3 have been retained. For the Ising model, we

apply the expansion of Eq. (17.29) to Eq. (17.30) to obtain,

h

t
¼ m� m

t
� 1

3

m

t

� �3

þ � � �

 �� �

� 1� m
m

t
� 1

3

m

t

� �3

þ � � �

 �� ��1

;

ð17:35Þ

and upon treating the inverted term as a truncated binomial expansion

(ð1� xÞ�n � 1� nx), obtain,

h

t
¼ m� m

t
� 1

3

m

t

� �3

þ � � �

 �� �

� 1þ m
m

t
� 1

3

m

t

� �3

þ � � �

 �� �

;

ð17:36Þ
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which, after collecting the terms up to order (m/t)3 reduces to,

h ¼ mðt � 1Þ þ m3 1

3t2
þ 1� 1

t

� �
 �

þ � � �

¼ mDt þ m3 1

3t2
þ Dt

t


 �

þ � � � :
ð17:37Þ

17.4.1 Compressibility and susceptibility

For the van der Waals model, the compressibility near the critical point is given

from Eq. (17.34) as,

�VCwTð Þ�1 ¼ PC

VC

@p

@v

� �

� PC

VC

�6Dt þ 18DtDv� 9

2
ðt þ 8DtÞðDvÞ2

� �

:

ð17:38Þ

In the limit that Dn approaches zero, this yields

wT � 1

6PC

Dtð Þ�1 ¼ 1

6PC

Dtð Þ�g1 ; ð17:39Þ

with the critical exponent, g1 ¼ 1. For the Ising model, the susceptibility is

similarly obtained from Eq. (17.37) as,

wmð Þ�1 ¼ @H

@M

� �

T

� lMS

MS

� �

@h

@m

� �

¼ l Dt þ 3m2 1

3t2
þ Dt

t


 �� �

; ð17:40Þ

which, if we eliminate m by taking its limit (m � 0) at the critical point, we

find,

w�1
m ¼ lDt; ð17:41Þ

or,

wm ¼ 1

l
Dtð Þ�g2 ; ð17:42Þ

with g2 ¼ 1.

17.4.2 Order parameter

For the van der Waals order parameter (i.e. the coexistence curve), we inquire

as to how Dn depends on Dt below Tc. To eliminate the pressure from Eq.

(17.34), we note from the scaled equation of state in Eq. (17.25) that, near the

critical point, p ¼ 4t – 3 and that Eq. (17.34) reduces to,

3

2
ðt þ 8DtÞðDvÞ2 � Dt 9Dv� 6ð Þ: ð17:43Þ
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Again, in the limit that Dn and Dt approach zero while t approaches unity, we

find,

Dv � �2 �Dtð Þ1=2; ð17:44Þ

from which one can show (Ex. 8) that the order parameter varies as a power

law,

f ¼ 1

2

nl � ng

nC
� �Dtð Þ1=2 ¼ �Dtð Þb1 ; ð17:45Þ

with a critical exponent b1 ¼ ½.

For the Ising model, we obtain the order parameter (m) by applying the limit

h � 0 to Eq. (17.37) to find,

� Dt ¼ m2 1

3t2
þ Dt

t


 �

; ð17:46Þ

or,

m � �
ffiffiffi

3
p

�Dtð Þb2 ; ð17:47Þ

with b2 ¼ ½.

In a similar fashion, one can show (Ex. 9) that the shape of the critical

isotherm of both the van der Waals and Ising models is given by Eq. (17.33)

with d1 ¼ d2 ¼ 3. This is remarkable. Not only do both the van der Waals and

Ising models predict divergences of related quantities (like the compressibility

and susceptibility) near the critical point, but both models (dealing with very

different physical systems) also display an identical value for the critical

exponent. It is as though each model, at least in its scaled form, produces an

equivalent geometrical property in which the shapes of the isotherms and their

respective derivatives develop identically in the vicinity of the critical point.

This geometrical connection is reinforced by a generalized theory of phase

transitions, known as the Landau Theory, which we will now examine.

17.5 Landau theory

You may have noticed that, in general, the equation of state can be derived from

the free energy. For fluids, it can be derived from either the Gibbs free energy by,

V ¼ @G

@P

� �

T

; ð17:48Þ

or via the Helmholtz free energy by,

P ¼ � @F

@V

� �

T

: ð17:49Þ
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In a similar fashion, for magnetic systems the equation of state can be obtained

either by,

M ¼ � @G

@H

� �

T

or H ¼ @F

@M

� �

T

: ð17:50Þ

Furthermore, the compressibility and susceptibility are seen to involve second

derivatives of the free energy and it reasons that the similarities between both

the fluid and magnetic phase transitions boil down to inherent similarities

already present in the functional form of the free energy. To explore this, the

Landau theory supposes that the free energy (here the Helmholtz free energy)

can be expanded as a power series of the respective order parameter of the

form,

Fðt;fÞ ¼ goðtÞ þ g1ðtÞfþ g2ðtÞf2 þ g3ðtÞf3 þ g4ðtÞf4 þ g5ðtÞf5 þ � � � ;
ð17:51Þ

where the various temperature-dependent coefficients are assumed to be given

by similar expansions about the critical point of the form,

goðtÞ ¼ f00 þ f01Dt þ f02Dt
2 þ f03Dt

3 þ � � �
g1ðtÞ ¼ f10 þ f11Dt þ f12Dt

2 þ f13Dt
3 þ � � �

g2ðtÞ ¼ f20 þ f21Dt þ f22Dt
2 þ f23Dt

3 þ � � �
..
.

ð17:52Þ

Now in many instances, including the two cases we have discussed thus far,

the free energy is unchanged on inversion of the order parameter. For example,

in the magnetic case, the free energy depends only on the size of the magnet-

ization and not on whether it is directed up or down. Thus, for this situation,

the free energy must be an even function of the order parameter,

Fðt;fÞ ¼ goðtÞ þ g2ðtÞf2 þ g4ðtÞf4 þ � � � : ð17:53Þ

The general equation of state is then given (using the magnetic system as an

example) as,

H ¼ @F

@M

� �

T

/ @F

@f

� �

t

; ð17:54Þ

and the generalized susceptibility is given by,

w�1 ¼ @H

@M

� �

T

/ @2F

@f2

� �

t

: ð17:55Þ

Note that since the susceptibility diverges on approach to the critical point, its

inverse must vanish and so the coefficient f20 in Eq. (17.52) must be zero. To

leading order, the equation of state is,
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H � 2g2ðtÞfþ 4g4ðtÞf3; ð17:56Þ

which just below the critical point in a vanishing field becomes,

f2 � � g2ðtÞ
2g4ðtÞ

� f21

2f40
�Dtð Þ; ð17:57Þ

so that the order parameter again displays,

f � �
ffiffiffiffiffiffiffiffi

f21

2f40

s

�Dtð Þ1=2; ð17:58Þ

with the mean field exponent, b ¼ ½.

For the susceptibility above the critical point (where f ¼ 0),

w�1 / @2F

@f2

� �

t

� 2g2ðtÞ � 2f21ðDtÞ1; ð17:59Þ

implying the mean field exponent g ¼ 1. The shape of the critical isotherm

itself is obtained from the equation of state in Eq. (17.56) in the limit that Dt

approaches zero. In this limit (with f20 ¼ 0), g2(t) vanishes and,

H � 4f40f
3 or f � 1

4f40

� �1=d

H1=d; ð17:60Þ

with the mean field exponent d ¼ 3.

17.6 Renormalization theory

The mean field approach, in which the growing fluctuations in order param-

eter occurring near the critical point are ignored in favor of an average field,

is largely successful in explaining the critical phenomena including the

universality seen between both the van der Waals and Ising models. How-

ever, the various critical exponents obtained in the mean field approximation,

as summarized in Table 17.1, are clearly at odds with those values obtained

Table 17.1 Critical exponents observed experimentally for both fluids and magnet are
compared with those from mean field theory (data obtained from Stanley (1971)).

Quantity Critical exponent Experimental range Mean field value

Specific heat a 0 to 0.2 0

Order parameter b 0.3 to 0.4 0.50

Susceptibility g 1.1 to 1.4 1.0

Critical isotherm d 4.2 to 4.4 3.0
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by careful experiments conducted near the critical point. It seems then that

the neglected fluctuations do have an effect on the transition after all. But

how would we incorporate this effect for fluctuations that, by design, are

unpredictable? There is one property of these fluctuations that can guide us:

their structure is self-similar for length scales smaller than the correlation

length.

17.6.1 A matter of perspective

Again, by presuming that the fluctuations are self-similar, we are assuming

that the spatial patterns they form will appear unchanged under a process of

renormalization. For example, the Sierpinski gasket that we encountered in

Chapter 8 is a geometrical fractal that is self-similar. Viewed far away, we

see the overall pattern of three solid triangles with one inverted vacancy. If

we advance closer, our visual perspective effectively expands one of these

three solid triangles. At some point of approach, this single triangle reveals

itself to contain three solid triangles and an inverted vacancy, and appears to

our eyes to be identical with the pattern we observed when we were farther

away.

In the renormalization approach, we essentially seek a mathematical frame-

work by which to describe how the self-similarity is maintained during

transformations that function much like the alteration of our visual perspective

when we move closer and farther away. In this way we can exploit the self-

similarity to place restrictions (scaling relations) on the various exponents such

that each can be predicted from knowledge of just two fundamental exponents:

one (o) that characterizes the self-similarity associated with the order param-

eter and another (n) that characterizes how the correlation length diverges on

approach to the critical point.

17.6.2 Kadanoff spin renormalization

Following the example of Kadanoff, we will consider our system to be an

Ising lattice whose spins are either up or down. In order to achieve the visual

effect we desire, we will need to perform two operations on this lattice, as

illustrated in Fig. 17.5. Firstly, we need to partition the system into cells of

size ba << x, and follow some recipe to condense the contents of each cell

into a single, Ising spin. This results in a lattice that appears magnified, as

though we had moved closer. To counter this, we need to perform a second

operation that amounts to our backing away from the lattice until it reappears

as it did at the start. Thus, after condensing the spins, we need to shrink all

the distances by a factor of b, such that a distance in the renormalized system

becomes,

Original Ising Lattice

Renormalized Ising Lattice

(a)

(b)

(c)

ba

a

cell, α 

Figure 17.5

In the process of

renormalization, an Ising spin

lattice is (a) partitioned into cells

of size ba << x. (b) The

contents of each cell are then

replaced by either a single up

or down spin based on its

average or net spin, according

to Eq. (17.63). (c) Finally, the

lattice is shrunken back to its

original perspective according to

Eq. (17.61).
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r0 ¼ r=b; ð17:61Þ

where r is the corresponding distance in the original lattice.

Now, how do we condense the spins of an Ising lattice so as to achieve a cell

that contains a single Ising spin? An obvious recipe would begin by replacing

the contents of the cell by the average of the spins contained inside. For a given

cell labeled a, this average is,

mavga ¼ 1

bd

X

Na

i¼1

mai ; ð17:62Þ

where the sum runs only over the contents of the cell. However, this average

value alone is unlikely to serve as a renormalized Ising spin, whose value must

be ma ¼ �1, because the average could be anywhere between these limits. In

order to properly renormalize our original lattice into a self-similar Ising

lattice, the average spin of a cell will need to be adjusted so that its corres-

ponding Ising spin is either all up or all down. To do this we assume that there

is an appropriate adjustment factor such that,

ma ¼ bomavga : ð17:63Þ

Validity of the adjustment factor

Our choice for b is restricted to be less than the correlation length. When

b is small compared to x, we will typically find that the contents of the

cell are almost entirely up or entirely down, and so little or no adjustment

is required (bo � 1). But as b increases, the average of the contents will

tend to decrease from �1 towards zero and the adjustment will need to

increase to compensate. It reasons then that the exponent o must be

greater than zero. This adjustment may seem an unrealistic fabrication,

since the average spin of any cell will vary and would require different

adjustment factors. However, when we incorporate the necessary ensem-

ble averaging, the notion of a common adjustment factor takes on a

proper meaning.

Renormalized correlation function

Now that we have our recipe for carrying out the renormalization, let us look at

how the spin correlation function remains self-similar during the transform-

ation. The spin correlation function for the original system can be expressed as,

GðrÞ ¼ mð0ÞmðrÞh i ¼ 1

N

X

N

i

mið0Þ
1

Nr

X

Nr

j6¼i

mjðrÞ; ð17:64Þ
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where N is the total number of spins and Nr the number of spins that are a

distance r away from a central spin. The spin correlation function of the

renormalized lattice is,

Gðr0Þ ¼ mað0Þmbðr0Þ
	 


¼ 1

NC

X

NC

a

mað0Þ
1

NC;r0

X

NC;r0

b 6¼a

mbðr0Þ; ð17:65Þ

where NC ¼ Nb�d is the total number of cells created in the partitioning and

NC;r0 ¼ Nrb
�d is the number of cells a distance r’ away from a central cell.

When expressed using our adjustment factor, this becomes,

Gðr0Þ ¼ b2o

NCNC;r0

X

NC

a

mavga ð0Þ
X

NC;r0

b 6¼a

m
avg

b ðr0Þ ¼ b2ob2d

NNr

X

NC

a

mavga ð0Þ
X

NC;r0

b 6¼a

m
avg

b ðr0Þ

¼ b2ob2d

NNr

X

NC

a

1

bd

X

Na

i

mai ð0Þ
 !

X

NC;r0

b 6¼a

1

bd

X

Nb

j

m
b
j ðrÞ

 !

¼ b2o
1

N

X

N

i

mið0Þ
1

Nr

X

Nr

j6¼i

mjðrÞ ¼ b2oGðrÞ;

ð17:66Þ
and we find that the spin correlation function undergoes renormalization with a

scaling exponent 2o.

In the renormalized lattice, distances of the original lattice are rescaled to

r0 ¼ b�1r. This includes the correlation length,

x0 ¼ b�1x � b�1
Dtð Þ�n; ð17:67Þ

and implies that the renormalization has the effect of creating a new lattice that

is farther away from the critical point,

x0 � Dt0ð Þ�n ) Dt0 � b1=nDt: ð17:68Þ

Thus we can consider the development of the correlation function on approach

to the critical point to be given by,

Gðr;DtÞ ¼ b�2o
Gðr0;Dt0Þ ¼ b�2o

Gðb�1r; b1=nDtÞ: ð17:69Þ
The choice for the partitioning is arbitrary, so let us consider choosing it such

that b ¼ r. Then,

Gðr;DtÞ ¼ r�2o
Gð1; r1=nDtÞ ¼ r�2of ðz ¼ rDtnÞ ¼ r�2of ðz ¼ r=xÞ: ð17:70Þ

If we compare this with the form obtained from Ornstein–Zernike in Chapter

15, or that for the pair distribution function of randomly generated fractals with

fractal dimension Df in Chapter 8,

GðrÞ ¼ e�r=x

rðd�2þZÞ /
e�r=x

rd�Df
; Df ¼ 2� Z; ð17:71Þ
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we see that the exponent o is merely a measure of the dendritic or

fractal nature of the fluctuation patterns emerging near the critical point and

that

o ¼ 1

2
ðd � 2þ ZÞ � d � Df

2
: ð17:72Þ

The renormalized field

Odd though it may seem, in the process of renormalizing the lattice, we have

also caused an effective alteration of the external field. Since energy can

neither be created nor destroyed, it must remain unchanged during the renor-

malization process. Because we have redefined our Ising spins, we must

accordingly adjust the external field so that

U ¼ �H
X

N

i

mi ¼ �H 0
X

NC

a

ma ¼ �H 0bo
X

NC

a

mavga ¼ �H 0bo�d
X

NC

a

X

Na

i

mai :

ð17:73Þ

remains unchanged. For this to be, the external field must be correspondingly

renormalized as,

H 0 ¼ bd�oH : ð17:74Þ

17.6.3 Scaling relations

The free energy is likewise conserved on transforming the lattice and is

only redistributed in a new way. In particular, the Gibbs free energy per

particle must remain unaltered if both lattices are to represent an Ising

system and, since the free energy of a condensed cell is bd times that of a

single site,

GðDt;HÞ ¼ b�dGðDt0;H 0Þ ¼ b�dGðb1=nDt; bd�oHÞ: ð17:75Þ

Note that this homogeneous function contains only two undetermined (funda-

mental) exponents (o and n) aside from the dimension. Since all the diverging

quantities present near the critical point can be obtained by partial derivatives of

the free energy, renormalization offers the means to forge relationships between

the various exponents such that, once any two are known, all others can be

determined. To see how this works, let us start with the equation of state,

M ¼ @G

@H

� �

T

:
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This, from Eq. (17.75), undergoes renormalization as,

MðDt;HÞ ¼ b�d @GðDt0;H 0Þ
@H

� �

T

¼ b�o @GðDt0;H 0Þ
@H 0

� �

T

¼ b�oMðb1=nDt; bd�oHÞ;
ð17:76Þ

where we have made use of Eq. (17.74). The magnetization M is also the order

parameter and, to examine its temperature dependence in a vanishing field

(H ¼ 0), we arbitrarily choose our scaling factor such that b ¼ ð�DtÞ�n
. Then,

MðDt; 0Þ ¼ ð�DtÞ�n½ ��o
Mðð�DtÞ�1

Dt; 0Þ ¼ ð�DtÞnoMð�1; 0Þ / ð�DtÞb;
ð17:77Þ

and we obtain the following scaling relation:

b ¼ no: ð17:78Þ
A similar approach to the shape of the critical isotherm (Dt ¼ 0) is obtained by

arbitrarily choosing b ¼ H�1=ðd�oÞ. From Eq. (17.76), we find,

Mð0;HÞ ¼ ðH�1=ðd�oÞÞ�o
Mð0;H�1HÞ ¼ Ho=ðd�oÞMð0; 1Þ / ðHÞ1=d;

ð17:79Þ

where,

d ¼ d

o
� 1: ð17:80Þ

Continuing on to the susceptibility,

wT ðDt;HÞ ¼ @MðDt;HÞ
@H

� �

T

¼ b�o @MðDt0;H 0Þ
@H

� �

T

¼ bd�2o @MðDt0;H 0Þ
@H 0

� �

T

¼ bd�2owT ðb1=nDt; bd�oHÞ:

ð17:81Þ

Again, choosing b ¼ ðDtÞ�n
, the susceptibility (for H¼ 0) can be expressed as,

wT ðDt; 0Þ ¼ ðDtÞ�n½ �d�2o
wT ððDtÞ�1

Dt; 0Þ ¼ ðDtÞ�n d�2oð Þ
wT ð1; 0Þ / ðDtÞ�g;

ð17:82Þ

where,

g ¼ n d � 2oð Þ: ð17:83Þ
As a final example, we also consider the specific heat, which is defined by,

CHðDt;HÞ ¼ �T
@2GðDt;HÞ

@T2

� �

H

¼ �Tbð2=nÞ�d @2GðDt0;H 0Þ
@T 02

� �

H

¼ bð2=nÞ�dCH ðb1=nDt; bd�oHÞ:
ð17:84Þ
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Again, one can show that,

CH ðDt; 0Þ ¼ �Dtð Þ�n½ �ð2=nÞ�d
CH ð�1; 0Þ / �Dtð Þ�a; ð17:85Þ

where,

a ¼ 2� nd: ð17:86Þ

From Eqs. (17.78), (17.80), (17.83) and (17.86), one can determine a wide

variety of scaling relations, such as:

aþ 2bþ g ¼ 2

aþ bðdþ 1Þ ¼ 2

gðdþ 1Þ ¼ ð2� aÞðd� 1Þ
g ¼ bðd� 1Þ:

ð17:87Þ

that restrict the critical exponents. Although renormalization has reduced our

problem to the determination of two exponents, it still does not yet provide a

recipe for determining the exponents n or o. For this, one would need to

proceed along lines much as we did in the renormalization example in Chapter

16, to develop an accurate recipe for how compacting the contents of each cell

specifically relates Dt0 to Dt and Gðr0Þ to GðrÞ. Then, exponents like n and o

could, in principle, be determined by,

n ¼ log b

logðDt=Dt0Þ and 2o ¼ log b

logðGðrÞ=Gðr0ÞÞ : ð17:88Þ

Summary

c Mean field theories are those in which the fluctuations in the order

parameter near the critical point are ignored and replaced by an order

parameter that is spatially uniform.

c Mean field theories, including the generalized Landau theory, are

successful in accounting for both the diverging behavior of certain

quantities near the critical point and for laws of corresponding states.

However, mean field theory predicts critical exponents that are often

not in agreement with experiment.

c The determination of critical exponents is improved by incorporating

fluctuations in the order parameter through a renormalization technique

which assumes that the fluctuations are self-similar.

c The assumption of self-similar fluctuations leads to a set of scaling

relations that constrict the various critical exponents to just two, inde-

pendent, exponents.
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Exercises

17.1. Show how Eq. (17.10) can be obtained from Eq. (17.8) using the

thermodynamic identity (dU ¼ TdS � PdV ) and the ideal gas law,

assuming that the interaction is turned on without disturbing the entropy.

17.2. Derive the expressions given in Eq. (17.24) for the state variables of the

critical point in the van der Waals model.

17.3. Verify the law of corresponding states given in Eq. (17.25). (Hint: do

this by substituting the critical point state variables of Eq. (17.24) into

Eq. (17.25) to obtain the van der Waals equation of state.)

17.4. Derive the Gibbs free energy of the van der Waals model given in Eq.

(17.13) starting from Eq. (17.12).

17.5. Derive the expression given in Eq. (17.27) for the Ising model Curie

temperature.

17.6. Verify the law of corresponding states given in Eq. (17.28) for the Ising

model. (Hint: do this by substituting the critical point state variables of

Eq. (17.26) and Eq. (17.27) into Eq. (17.28) to obtain the Ising

equation of state given by Eq. (17.22).)

17.7. Consider the scaled Ising equation of state given by Eq. (17.28) in the

limit of a vanishing magnetic field. Find solutions for this equation

both above and below Tc (e.g. at T=TC ¼ 1.3, 1.2, 1.1, 0.9, 0.8, 0.7 etc.)

and plot these solutions as a function of T=TC . How does your result

compare with the MT phase diagram shown in Fig. 15.12?

17.8. Derive Eq. (17.45) from Eq. (17.44) by converting from specific

volumes to densities.

17.9. Show that the shapes of the critical isotherms in the mean field

approximation are given by Eq. (17.33) with d1 ¼ d2 ¼ 3.

17.10. Verify the scaling relations presented in Eq. (17.87).

Suggested reading

For more on the subject of renormalization, I recommend the first two texts. The basic

principles of the Landau theory are presented in most standard thermodynamics texts.
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H. Eugene Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford

University Press, New York, 1971).

P.M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge

University Press, New York, 2003).

C. Kittel and H. Kroemer, Thermal Physics, 2nd Ed. (W. H. Freeman and Co., San

Francisco, 1980).

D.V. Schroeder, An Introduction to Thermal Physics (Addison Wesley Longman, New

York, 2000).
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18 Superconductivity

Introduction

We have now witnessed the similar patterns associated with second-order

phase transitions in both fluid and magnetic systems. These patterns include

laws of corresponding states and similarity in critical exponents, that govern

how properties evolve near the transition point. Furthermore, the Landau

theory provides a framework for understanding the commonality of these

second-order phase transitions, in terms of similarity in the functional depend-

ence of the free energy on an appropriately chosen order parameter, and a

simple expansion that can be performed near the critical point. In this chapter,

we examine yet another significant phase transition found in condensed matter:

the transition of a material to a state of virtually infinite conductivity or

superconductivity. Here the transition involves the sticking together of two

electrons into a boson-like, superconducting charge carrier known as a Cooper

pair, and we again find evidence of a second-order transition consistent with

mean field theory.

18.1 Superconducting phenomena

18.1.1 Discovery

In 1908, H. K. Onnes perfected the technique for cooling helium gas to its

condensation point and soon after began using this new technology to investi-

gate the properties of various elements at ultra low temperatures. In one

instance, Onnes was curious about the ultimate demise of the resistivity of

an electronic conductor. As we saw in Chapter 12, the resistivity of most

conductors decreases linearly with temperature at high temperatures, due to the

scattering of electrons by lattice phonons, but approaches a limiting value at

low temperatures, associated with a mean free path determined by macroscopic

imperfections of the crystal lattice. In a series of studies, Onnes measured the

resistance of gold and platinum and observed an approach to a limiting resist-

ance at low temperatures. In an effort to eliminate the effects of imperfections,
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he extended the study in 1911 to include mercury, which at that time could be

refined to a highly pure form. The results of this study, shown in Fig. 18.1, are

quite dramatic. A roughly linear temperature dependence was observed above

about 4.2 K, which decreased abruptly to an immeasurably small resistance at

lower temperatures. On reheating, the resistance was identically retraced, and

Onnes concluded that mercury had undergone a unique phase transition to a

new state characterized by virtually zero resistance – a “superconducting”

phase.

Since then, many other elements of the periodic table have been shown to

exhibit a similar superconducting transition at various transition temperatures,

indicating that the transition is not unique to mercury. Values of the transition

temperatures, Tc, as well as other characteristics of the transition are presented

in Table 18.1.

18.1.2 Meissner effect

The next major development occurred in 1933 when W. Meissner and

R. Ochsenfeld discovered another unique characteristic of the superconducting

phase. They observed that, when a superconducting material is cooled below

Tc in the presence of a weak magnetic field (~B ¼ mo~H), the field lines are

totally expelled from the interior of the sample. In other words, below Tc the

specimen behaves like a perfect diamagnetic material with magnetic suscepti-

bility w
m
¼ �1 and exhibits an effective magnetization that exactly counters

the external field,

~B ¼ mo~H þ mo~M ¼ 0; or ~M ¼ �~H : ð18:1Þ
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Figure 18.1

The resistance of a purified Hg

specimen measured by Onnes

demonstrating the transition to

a state of ultralow resistance

below 4.2 K. (Adapted from

Onnes (1911).)

Table 18.1 Characteristic values for the critical temperature (Tc), critical field (Hc), specific
heat increase ((CS� CN)/CN|TC )) and energy gap (Eg) of several superconducting

elements. (Data obtained from Handbook of Chemistry and Physics (1983) and from
Aschroft and Mermin (1976).)

Element Tc (K) Hc(0) (Gauss) (CS–CN)/CNjTc Eg(0)/kBTc

Al 1.175 105 1.4 3.4

Cd 0.517 28 1.4 3.2

Hg (a) 4.154 411 2.4 4.6

In 3.408 282 1.7 3.6

Nb 9.25 2060 1.9 3.8

Pb 7.196 803 2.7 4.3

Sn 3.722 305 1.6 3.5

Ta 4.47 829 1.6 3.6

Tl 2.38 178 1.5 3.6

V 5.40 1408 1.5 3.4

Zn 0.85 54 1.3 3.2
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The Meissner effect, which is often demonstrated by the levitation that

occurs when a specimen is cooled below the transition temperature, is not

merely a consequence of the vanishing resistivity. Rather, it is an altogether

new property of the superconducting state. To see this, consider the set of

experiments conducted both for an ideal (r¼ 0) conductor and for a super-

conductor, that are illustrated in Fig. 18.2. For both materials, we imagine

that the resistivity is finite above some critical temperature Tc and zero below

that temperature. In experiment A, we imagine the specimens start off above

Tc and have been left in the absence of any magnetic field for a sufficient

length of time for any currents present to have decayed to zero. Both samples

Ideal Conductor Superconductor

Tc

B 

J 

Experiment A Experiment A Experiment BExperiment B

T >Tc

T < Tc

F = constant

r = 0

r > 0

F = 0

Figure 18.2 Two experiments (A and B) are conducted on both a normal, but ideal, conductor and on a

superconductor. In experiment A, the specimen is cooled in zero-field and the field is switched on

and then off only below Tc. In experiment B, the specimen is cooled in a non-zero field that is

switched off and then back on below Tc. For the ideal conductor, the total flux inside the specimen

(due to the external field and the induced currents) remains constant. For the superconductor, the

total flux inside is always zero below Tc regardless of which experiment is performed.
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are then cooled below Tc into the regime where r ¼ 0, at which point nothing

happens. Now a magnetic field is introduced. The changing flux through both

samples induces a circular current flow that, in this instance of zero resistiv-

ity, remains stable even after the magnetic flux has stopped changing. If the

field is then switched off, the reverse change in flux brings both currents to

zero again.

We can understand this first experiment rather easily from classical electo-

magnetic theory as a consequence of Faraday’s law,

emf ¼
þ

~E � d~l ¼ � @FB

@t
: ð18:2Þ

Turning on or off the magnetic field causes an emf to appear which drives free

charges in a circular fashion. For a material with r ¼ 0, one can show (Ex. 1)

that the current density, ~J , increases at a rate given by,

@~J

@t
¼ q2SnS

mS

~E; ð18:3Þ

where nS, mS and qS are the concentration, mass and charge of the supercon-

ducting charge carriers, respectively. With a little manipulation, we can then

express Faraday’s law as,

@

@t

mS

q2SnS

þ

~J � d~l
� �

¼ � @FB

@t
; ð18:4Þ

or,

@

@t

mS

q2SnS

þ

~J � d~l þ FB

� �

¼ @

@t
FJ þ FBf g ¼ 0: ð18:5Þ

This last expression is really just a statement of Lenz’ law pertaining to how

Nature abhors a changing flux. As we see in the panel of illustrations of

Fig. 18.2, the currents in an ideal conductor respond in whatever manner is

needed to maintain the same net flux through the sample, regardless of the

particular situation.

Returning again to Fig. 18.2, we now consider experiment B, in which

both samples are prepared above Tc in the presence of a fixed magnetic field

that has been applied for sufficient time that all induced currents have

dissipated. Again, we cool both specimens into the region below Tc where

r ¼ 0. This time, something remarkable happens to the superconductor. The

moment we enter the superconducting phase, we find that a current appears

without any change of the magnetic flux! When we later turn off the field,

this current disappears. In considering the behavior of the superconducting

sample, it appears that current appears and disappears, not because of the

change in magnetic flux, but rather in response to the presence or absence of

the flux itself.
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London equation

Regardless of whether the field is switched on or off, the total flux in the

superconducting specimen always remains zero below Tc. It was this finding

that motivated F. and W. London to propose that not only is the total flux in the

superconductor constant, but that the constant value is always zero. From

Eq. (18.5), this unique constraint implies that

mS

q2SnS

þ

~J � d~l ¼ �FB; ð18:6Þ

which can be expressed alternatively using Stokes’ theorem of vector calculus

as,

mS

q2SnS

ð

~r�~J
� �

� d~a ¼ �
ð

~B � d~a: ð18:7Þ

Since this condition must remain true regardless of the smallness of the

specimen, we obtain the London equation,

~r�~J ¼ � q2SnS

mS

~B; ð18:8Þ

which expresses how the introduction of any weak external magnetic field in a

superconductor is exactly countered by a rotating current of superconducting

charge carriers near the surface.

Penetration length

Although the Meissner effect demonstrates that external magnetic fields are

expelled from the interior of a superconducting sample, it is possible for some

magnetic fields to just squeeze into the sample near the surface. If we recall

Ampere’s law,

~r�~B ¼ mo~J ; ð18:9Þ

for time-independent, static fields, we can apply a curl (and another Maxwell

equation, ~r �~B ¼ 0) to obtain,

�r2~B ¼ mo
~r�~J : ð18:10Þ

Upon introducing the London equation (Eq. (18.8)), this reduces to the

following differential equation for the spatial variation of the magnetic field

inside the sample:

r2~B ¼ moq
2
SnS

mS

~B: ð18:11Þ
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One can show (Ex. 2) that the current density is governed by a similar

differential equation,

r2~J ¼ moq
2
SnS

mS

~J : ð18:12Þ

Imagine then a surface of the superconductor in the presence of a weak

magnetic field, as presented in Fig. 18.3. Outside, the magnetic field has some

value ~Bo. In this one-dimensional situation, the variation of ~BðxÞ moving into

the interior is governed by,

@2~B

@x2
¼ 1

l2
~B; ð18:13Þ

whose solution is,

~BðxÞ ¼ ~Boe
�x=l; ð18:14Þ

where,

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mS

moq
2
SnS

r

: ð18:15Þ

In this instance, some magnetic field is allowed inside the superconductor,

but the magnitude of the penetrating field decreases exponentially. The

parameter l is the penetration length and is a measure of how far the

magnetic field (and the current density) can penetrate into a superconducting

region. Using values of ne from Table 12.1 for electrons in a typical con-

ductor, one finds that l � 100 nm.

x
λ

SuperconductorBo

B (x)

Figure 18.3 Although an external magnetic field is expelled from the interior of a superconductor, some field

is permitted to penetrate near the surface. This field decreases to about 37% of its external

intensity over a distance l, known as the penetration length.
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18.1.3 Critical field

In the above discussion, we specifically considered the expulsion of a “weak”

magnetic field. There are, in fact, limits to theMeissner effect. If the applied field

in a superconductor exceeds some temperature-dependent value,Hc(T), then the

field is no longer expelled and the resistivity returns to a non-zero value. That is,

above the critical field Hc , the superconducting phase is destroyed and material

returns to its “normal” (non-superconducting) phase. The size of the required

critical field increases with decreasing temperature and, as shown in Fig. 18.4, is

well described in terms of scaled variables by an empirical relation,

HcðTÞ ¼ Hcð0Þ 1� T

Tc

� �2
( )

� ðTc � TÞ near Tc: ð18:16Þ

Indeed, we see in Fig. 18.4 evidence for a law of corresponding states for the

critical field that is suggestive of an underlying second-order phase transition.

18.1.4 Specific heat

When a superconducting material is cooled in a field that exceeds the max-

imum critical field (Hc(0)), it remains in the normal phase and its specific heat
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Figure 18.4 The critical external field required to destroy the superconducting state increases with decreasing

temperature below Tc, and exhibits a law of corresponding states given by Eq. (18.16). Inset shows

the critical fields prior to scaling. (Data from E. Maxwell and O. S Lutes, 1954; Decker et al., 1958;

and Shaw et al., 1960.)

340 Superconductivity



displays the usual temperature dependence of conventional electron conduct-

ors. Namely, there are two contributions: the Debye contribution due to the

lattice vibrations which varies as T3, and the weaker electronic contribution

that decreases linearly with temperature. Both contributions are shown for

vanadium in Fig. 18.5, where C/T is plotted against the square of the tempera-

ture to produce a linear dependence.

However, when the same specimen is cooled in the absence of an external

magnetic field, thereby allowing the superconducting phase to form, the

specific heat displays a discontinuous increase at Tc and a radically different

temperature dependence below Tc . The size of the discontinuity at the critical

temperature can be characterized by the dimensionless quantity,

CS � CN

CN

�

�

�

�

Tc

; ð18:17Þ

where CS and CN are the specific heats of the superconducting and normal

phases, respectively. As seen in Table 18.1, this relative change in specific heat

is curiously similar for a wide variety of materials.

From the specific heat, we can use a little thermodynamics to demonstrate

that the superconducting state is one of lower entropy than the normal state.

Recall that the specific heat (at constant volume) is given by C ¼ T @S=@Tð Þ.
Since there is a discontinuous upward jump in C/T occurring at Tc for the

superconducting phase, there must occur a discontinuous increase in the slope

of S(T) for this phase at Tc . As illustrated in Fig. 18.6, this implies that the

entropy of the superconducting phase becomes less than that of the normal
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Figure 18.5 The specific heat of vanadium in both the normal (H > Hc(0)) and superconducting states. Note

the quantity plotted on each axis is designed to highlight conformity to specific heat

dependence for normal conductors. (Adapted from Bondi et al., 1958.)
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phase below Tc. It is clear then that the superconducting transition involves

some unknown ordering process.

At lower temperatures, the electronic contribution to the specific heat of the

superconductor, obtained by subtracting off the Debye contribution, varies

exponentially,

CS;el � e�EC=kBT ; ð18:18Þ

as illustrated in Fig. 18.7. Such an exponential temperature dependence is a

hallmark of two-level systems (see for example, Eq. (11.32) in the limit of
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Figure 18.6 An illustration of how the entropy of both the normal and superconducting phases evolves

differently below Tc. Because the entropy of the superconductor phase is lower than that of the

normal phase, the superconductor is more highly ordered.
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a logarithmic scale to illustrate the exponential dependence presented in Eq. (18.18) with Ec ¼
1.5kBTc. (Adapted from Bondi et al., 1958.)
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small T ) and suggests that the ordering which occurs at Tc produces a simple

system of two energy levels with one excited state having an energy Ec above

the ground state.

18.1.5 Energy gap

Experiments conducted in the 1950s revealed yet another characteristic of the

superconducting phase: an energy gap. In the normal phase, above Tc, elec-

trons of a conductor occupy energy levels up to the Fermi level. As we saw in

Chapter 12, only those electrons near the Fermi level participate in the

contributions to the specific heat, by being thermally excited into higher

allowed levels of the conduction band. However, in a superconducting mater-

ial, a new energy gap begins to form at Tc which is centered at the Fermi level.

The energy gap that forms is quite small, only about 1 meV, and much smaller

than the energy gap (� 1 eV) separating the valence band from the conduction

band. This new energy gap increases with decreasing temperature, and as

shown in Fig. 18.8, is well-described by an empirical law, similar to that of

Eq. (18.16) for the critical field,

EgðTÞ ¼ Egð0Þ
Tc � T

Tc


 �1=2

: ð18:19Þ

Once again, we find a law of corresponding states and further evidence for an

underlying second-order phase transition.
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Figure 18.8 A small energy gap develops below Tc in superconductors and increases in size with cooling.

A law of corresponding states is evident whose temperature dependence is well accounted for by

BCS theory. (Adapted from Townsend and Sutton, 1962.)

343 18.1 Superconducting phenomena



Quest for an attractive interaction

In our survey of superconducting phenomena above, we have seen much

evidence for an underlying second-order phase transition at work in the

superconductivity transition. We see laws of corresponding states at work

and evidence for a transition to a more ordered phase with lower entropy.

However, these changes are not accompanied by any change in the struc-

ture of the material. Instead, the zero resistivity, various electrodynamic

phenomena and the developing energy gap all suggest that the transition

mainly involves a change in the behavior of the conduction electrons, such

that they become more ordered and insensitive to scattering from the

lattice.

As we have stressed before, phase transitions rely on the presence of some

element of attractive interaction that overcomes the thermal agitation below

Tc and which drives the development of a more ordered phase. For fluids, this

attraction was the van der Waals interaction. For the magnetic system, it was

the exchange interaction that favored the alignment of magnetic moments.

For the superconducting phase transition, we face a big predicament: elec-

trons do not like to “stick” together because they are charged particles

repelled by the Coulomb force. It was this predicament that impeded the

development of a microscopic theory of the superconducting transition for

many years and the puzzle was only resolved in the 1950s after the isotope

effect was discovered.

18.1.6 Isotope effect

In 1950, Maxwell and Reynolds observed that the critical temperature of a

given superconducting material exhibited a surprising dependence on the

average mass of the lattice atoms. By measuring the critical temperature in a

series of samples with differing atomic mass, M, but identical electronic

structure, they observed that

Tc / M�b; ð18:20Þ

with the exponent b � 0.5 (see Fig. 18.9). This finding, known as the

isotope effect, had a profound influence on later development of micro-

scopic theories of the superconducting transition. As we have seen, the

critical temperature is a measure of the degree to which thermal energy

(kBTc) must be reduced for attractive interactions to become effective.

Materials with a lower Tc have weaker attraction. The isotope effect is, in

a sense, the “smoking gun” that points to the source of attraction that

develops between the conduction electrons in the superconducting phase.

The approximate square root dependence of Tc upon the atomic mass of the

lattice atoms indicates that the attractive force is related to the fundamental
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frequencies of oscillation of the lattice of ion cores whose frequency

decreases with increasing mass as,

o �
ffiffiffiffiffiffiffiffi

4C1

M

r

/ M�1=2: ð18:21Þ

Somehow, conduction electrons are able to achieve an attractive interaction at

temperatures below Tc through some process that involves the phonon proper-

ties of the lattice.

18.2 Cooper pairs and the BCS theory

In 1957, some four and a half decades after superconductivity was first

discovered, Bardeen, Cooper and Schrieffer (“BCS”) developed a successful,

microscopic theory of the superconducting state (see Bardeen, Cooper and

Schrieffer (1957)). Unfortunately for us, the theory itself is constructed using a

quantum mechanical framework that is beyond the scope of our current

treatment of the subject. Nevertheless, we review here some of the salient

features at a conceptual level.
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Figure 18.9 The critical temperatures for various isotopes of tin are plotted in a double logarithmic presentation.

The critical temperature is a measure of the interaction energy between superconducting

electrons and is seen to decrease as the square root of the mass of lattice atoms. (Adapted

from Maxwell, 1952.)
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18.2.1 Cooper pairs

The key ingredient of BCS theory is the notion that a pair of electrons with equal

but opposite momenta (~k2 ¼ �~k1) and opposite electron spin can be attracted

through couplingwith a lattice phonon. The formation of these so-calledCooper

pairs results in a new quasi-particle characterized by a quantum mechanical

wave function cð~rÞ that resides in a ground state of lowered energy.

Although the details of the attractive interaction are complicated, we can

illustrate it conceptually, as shown in Fig. 18.10. Imagine a first electron with

momentum~k1 traveling through the lattice. At low temperatures, the lattice is

fairly quiescent as there is little thermal energy to stimulate large numbers of

phonons or any appreciable vibration of the ion cores. As the electron passes, ion

cores are attracted to it by the Coulomb force and a slight distortion develops.

The distortion is not instantaneous because the ion cores have inertia and,

because the electron is really a wave, the induced distortion is impatterned in a

manner specific to the~k1 of the passing electron. In effect, a phonon is stimulated

into existence by the passing electron. Now a second electron of opposite

electron spin happens to travel in the opposite direction. If its wave vector,~k2,

has the same magnitude as~k1, then it will encounter the phonon as one already

preconfigured to its own wavelength. Like a key to its lock, the second electron

can exploit the pre-existing lattice distortions and move along with less resist-

ance. In reality, neither electron is first nor second, but rather both are coupled via

the phonon as though an attractive force were active between them. In the BCS

theory, this attractive force lowers the energy of the two-electron system and the
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Figure 18.10 A conceptual illustration of the electron–phonon interaction that results in the formation of a

Cooper pair. At the top, an electron traversing the lattice creates a minor distortion of the lattice.

At the bottom, a second electron, traveling in the other direction, couples with the lattice

distortion in such a manner as to reduce the overall energy of the electron pair.
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two electrons, now coupled into a Cooper pair, enter into a new ground state (the

BCS ground state) described by a superconducting wave function cð~rÞ.
Treated as a quasi-particle, the Cooper pair has a net spin of zero. Therefore,

the Cooper pair can behave as a boson. Like other bosons, such as phonons

and photons, the Cooper pair is not restricted by the Pauli exclusion principle

and an unlimited number of Cooper pairs can occupy the same quantum

mechanical state described by the same wave function, cð~rÞ. We can now

begin to see how a superconductor loses its electrical resistivity. What were

once two uncorrelated electrons that independently suffered scattering events

on passing through the crystal are now two correlated electrons “glued

together” into a single entity. One cannot be scattered unless the other is also

identically scattered and so neither can be scattered without disrupting the

coupling that holds them together. The binding of the two electrons in a

Cooper pair requires energy input to separate them. This energy requirement

is what creates the formation of the energy gap in the superconducting state

and separates the BCS ground state from the uncoupled upper energy level.

With cooling, this energy gap widens, implying that Cooper pairs become

more tightly bound with decreasing temperature.

The overall lowering of energy in the system promotes the formation of

more Cooper pairs and a self-accelerating condensation of Cooper pairs into

the BCS ground state ensues, which is much like the condensation of a gas into

a liquid or a paramagnet into a ferromagnet near a second-order phase transi-

tion. Each new Cooper pair enters into the BCS ground state and the super-

conducting wave function assumes the form of a macroscopic, coherent, wave

function whose modulus is a measure of the density of Cooper pairs,

nS ¼ cð~rÞj j2: ð18:22Þ

The superconducting current density associated with this wave function is

~J ¼ qS

mS

cð~rÞ ~pk kc
ð~rÞh i: ð18:23Þ

Here the quantum mechanical operator for charged particles interacting with an

electromagnetic field is given by,

~pk k ¼ �i�h~r� qS~A
� �

; ð18:24Þ

where ~A is the vector potential such that ~B ¼ ~r�~A.

In situations where the density of Cooper pairs is uniform, any spatial

variation of cð~rÞ can only appear in the phase of the wave,

cð~rÞ ¼ cj jeiyð~rÞ: ð18:25Þ

One then finds,

~J ¼ � qSnS

mS

�h~ryþ qS~A
� �

; ð18:26Þ
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which, when curled,

~r�~J ¼ � qSnS

mS

�h~r� ~ry þ qS ~r�~A
� �

¼ � q2SnS

mS

~B; ð18:27Þ

results in the London equation.

Without going into the details, we highlight two other significant predictions of

the BCS theory that are well supported by experiment. BCS theory predicts that,

Egð0Þ ¼ 3:52kBTc; ð18:28Þ

and

CS � CN

CN

�

�

�

�

Tc

¼ 1:43: ð18:29Þ

As can be seen from Table 18.1, both of these predictions are well supported

by experiment.

18.2.2 Flux quantization

Another feature that emerges from the coherent nature of the superconducting

wave function is the quantization of magnetic flux. Imagine, as illustrated in

Fig. 18.11, a superconducting ring with a closed path C in its interior. Inside,

deep beyond the penetration length of any magnetic field, both ~B and ~J are

zero. Thus from Eq. (18.26) above,

~ry ¼ � qS~A

�h
: ð18:30Þ

If we now integrate the gradient of the phase around the closed path,

þ

C

~ry � d~l ¼ Dy; ð18:31Þ

we must obtain the total change in phase around the ring. But, because cð~rÞ is
coherent, the wave function traveling around the ringmust “meet up”with itself.

The total change in phase must thus be some integer amount of 2p and so,

� qS

�h

þ

C

~A � d~l ¼ � qS

�h

ð

~r�~A
� �

� d~a ¼ � qS

�h

ð

~B � d~a ¼ m2p: ð18:32Þ

That is, the magnetic flux passing through the ring is quantized into units of,

Fo ¼ � h

qS
ð18:33Þ

known as a fluxon. For Cooper pairs with qS ¼ �2e, a fluxon is only 2.07 �
10�15 Tm2.
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18.3 Thermodynamics: Ginzburg–Landau theory

18.3.1 Mean field theory

In our discussion above, we have seen many features of the superconduct-

ing phase transition that suggest, at least in the absence of any external

magnetic field, that the transition is one of second order. Thus, as a starting

point, we could examine this transition in terms of a mean field approach in

which it is assumed that the order parameter is uniform. Returning to the

Landau theory, we ask, “What is an appropriate order parameter for the

superconducting phase transition?” The order parameter must be a measure

of the continuously increasing order that develops below Tc and must be

zero above Tc. Since the transition to the superconducting state arises from

the spontaneous coupling of electrons into Cooper pairs, Ginzburg and

Landau suggested using the macroscopic ground state wave function, c,

as the order parameter. Then, from Eq. (17.53) of the previous chapter, the

free energy density, ~FSðt;cÞ ¼ FSðt;cÞ=V , is given for a second-order

phase transition as,

~FSðt;cÞ ¼ goðtÞ þ g2ðtÞ cj j2 þ g4ðtÞ cj j4 þ � � � ; ð18:34Þ

Bo

B = 0

C

J 

Bo 

Figure 18.11 A superconducting ring placed in an external magnetic field has currents and a magnetic field only

near the surface of the material. In the interior, the superconducting wave function, cð~rÞ, is
uniform aside from a varying phase. To maintain this uniformity, the phase change in any single

circuit around the path C must appear in integers of 2p.
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where,

goðtÞ ¼ ~FSðt;c ¼ 0Þ ¼ ~FN ðtÞ
g2ðtÞ ¼ f21Dt

g4ðtÞ ¼ f40:

ð18:35Þ

To determine the variation of the order parameter, we seek the value that

minimizes the free energy. This is obtained by taking a derivative of the free

energy density with respect to c (actually c
),

@~FSðt;cÞ
@c
 ¼ f21Dtceq þ 2f40 ceq

�

�

�

�

2
ceq þ � � � ¼ 0; ð18:36Þ

from which we find that the equilibrium density of superconducting charges

increases below Tc as,

ceq

�

�

�

�

2 ¼ f21 �Dtð Þ
2f40

¼ f21

2f40
Tc � Tð Þ; ð18:37Þ

and see that the order parameter increases with the usual mean field critical

exponent of ½. At equilibrium, the free energy density is then,

~FSðt;ceqÞ � ~FN ðtÞ þ f21Dt ceq

�

�

�

�

2 þ � � � ¼ ~FN ðtÞ �
f 221
2f40

Dtð Þ2; ð18:38Þ

which, as anticipated, is seen to be lower than that of the normal conducting

phase whenever T < Tc.

Now that we know the free energy density in the superconducting state, we

can assess how large an external magnetic field is required in order to destroy

the phase. In general, application of an external field produces magnetization

and reduces the free energy density by an amount,

d~F ¼ �~M � d~B ¼ �mo~M � d~H : ð18:39Þ

For a superconductor below the critical field, the magnetization is just � ~H

(i.e. diamagnetic), and so the free energy density of the system increases with

increasing applied field as,

~FSðt;ceq;HÞ ¼ ~FSðt;ceqÞ �
ð

H

0

�moHð ÞdH ¼ ~FSðt;ceqÞ þ
moH

2

2
; ð18:40Þ

as illustrated in Fig. 18.12. Assuming that the normal phase is not especially

magnetic so that ~FN ðt;HÞ � ~FN ðtÞ, then the critical field corresponds to the

point in Fig. 18.12 when the free energy of the superconducting phase exceeds

that of the normal phase. From Eq. (18.38), this occurs when

~FSðt;ceq;HÞ ¼ ~FN ðtÞ �
f 221
2f40

Dtð Þ2 þ moH
2
c

2
¼ ~FN ðtÞ; ð18:41Þ
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or,

Hc ¼
f21
ffiffiffiffiffiffiffiffiffiffi

mof40
p Dtj j; ð18:42Þ

and we find that, near Tc, the critical field increases linearly with decreasing

temperature, in agreement with observations (see Eq. (18.16)).

18.3.2 Type II superconductors

We have waited until now to reveal a dirty little secret. Although all supercon-

ducting materials exhibit a vanishing of the resistivity, development of an

energy gap, and a discontinuity in the specific heat at Tc, not all exhibit a

complete Meissner effect below Tc. There is a class of superconducting

materials, comprised mainly of alloys and low conducting materials, for which

the external field is only partly expelled. Unlike those materials (Type I) that

exhibit full expulsion of the magnetic field up to the thermodynamic critical

field Hc, these other superconducting materials are referred to as Type II

superconductors.

The differences between Type I and Type II superconductors are illustrated

in Fig. 18.13. For Type I, the superconductor behaves as an ideal diamagnet

whose magnetization exactly offsets the applied field until the critical field is

reached and the normal phase returns (with a finite resistivity). In Type II

materials, this diamagnetic behavior is seen only up to a lower critical field,

Hc1. Above Hc1, the magnetization falls off and only some fraction of the

external field is expelled. Note, however, that the resistivity remains zero

above Hc1 and only returns to the normal state value at some upper critical

field, Hc2, where the magnetization is zero and the external field penetrates the

entire sample.

Studies of Type II superconductors have revealed that a spatial pattern

develops in the region between Hc1 and Hc2 in which the superconducting
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Figure 18.12 Variation of the free energy density for both the normal and superconducting phases in the presence

of an external field. The critical field, Hc, is that field for which the free energy of the

superconducting phase exceeds that of the normal phase.
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phase (S) is punctuated by small regions of normal phase (N). As illustrated in

Fig. 18.14, a view looking down along the direction of H finds isolated regions

of normal phase comprised of vertical “tubes” that span from top to bottom

through the sample. Because these tubes are composed of material in the

normal phase, they do not expel magnetic field and it is through these tubes

that some of the applied field is transmitted, giving the appearance of a reduced

magnetization.

Because of the tubes, there is a spatial variation in the sample. Below Hc1,

where the tubes are not present and the entire sample is superconducting, the

wave function of the Cooper pairs is spatially uniform. Its amplitude is the

same at all locations. When tubes form, this wave function can no longer be

uniform and its amplitude must vary in space, especially in the region near a

tube whose interior demands that cj j2 be zero. When magnetic field penetrates

through a tube, superconducting currents are set up, as shown in Fig. 18.14,

whose function is to offset the penetration of the magnetic field into the

superconducting region. These local “swirls” of superconducting current dens-

ity are referred to as vortices, and the region of magnetization between Hc1 and

Hc2 is often referred to as the vortex state.

18.3.3 The Ginzburg–Landau equations

To consider the features of the Type II superconductors, we now visit a

significant extension of the Landau theory of phase transitions, first presented

by Ginzburg and Landau in 1950. Our starting point is the realization that for

Type II situations, the wave function (also known as the order parameter) is no

Hc

Type I Type II

Hc2Hc1

–M

r r

–M

Figure 18.13 In Type I superconductors, the Meissner effect is maintained until the thermodynamic critical field

Hc is reached, when an abrupt transition to the normal phase occurs. In Type II superconductors,

the Meissner effect is maintained only to the lower critical field, Hc1. Between Hc1 and the

upper critical field, Hc2, an external magnetic field is only partially expelled.
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longer uniform and because tubes might exist, there can be regions in which

the magnetic field is non-zero. To accommodate this, two new terms are

introduced into the free energy density of Eq. (18.34) such that,

~FSðt;c; ~H ;~AÞ � ~FN ðtÞ þ f21Dt cj j2 þ f40 cj j4 þ mo
2

~H � ~H i

�

�

�

�

2

þ 1

2mS

�i�h~r� qS~A
� �

c
�

�

�

�

�

�

2

:
ð18:43Þ

The first new term is pretty easy to understand. We saw above that when an

applied field is fully expelled it increases the free energy density of a

D

C

B

–M

A

H

C D

A B

J 

J 

Figure 18.14 The developing structure of a Type II superconductor. (A) In the absence of an external field, no

current is present. (B) Below Hc1, a current is produced in accordance with the London equation

and the Meissner effect is observed in which the external field is fully expelled. (C) Near Hc1,

a tube of normal phase nucleates into existence in the interior of the sample, creating a vortex

of counter circulating current near its surface. (D) With increasing field, more tubes are formed until,

at Hc2, they become too dense to sustain any superconducting current.
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superconductor by moH
2=2. Consequently, if some of the field, ~Hi, is allowed

to penetrate through tubes, this will lower the free energy density. The last term

derives from Eq. (18.24) and looks quite similar to a quantum mechanical

kinetic energy (E ¼ ð�h2=2mÞr2c), but with a component derived from the

local magnetic field, (~B ¼ ~r�~A). It is this last term, containing the gradient

of the wave function, which will accommodate contributions to the free energy

from a non-uniform order parameter.

Our approach parallels that for the case of a uniform order parameter, discussed

earlier. We seek the order parameter that minimizes the free energy. But, since we

are dealing with a spatially varying structure (i.e. regions of superconductor

punctuated by normal tubes) we need to minimize the total free energy,

FS ¼
ð

V

~FSðt;c; ~H ;~AÞd3~r; ð18:44Þ

with respect to both cð~rÞ and~Að~rÞ. This minimization is not trivial, but if done,

one obtains two conditions. The first of these arises from minimization with

respect to cð~rÞ and is,

1

2mS

�i�h~r� qS~A
� ��

�

�

�

�

�

2

c þ f21Dtc þ 2f40 cj j2c ¼ 0: ð18:45Þ

The second, arising from minimization with respect to ~Að~rÞ is,

� iqS�h

2mS

c
~rc� c~rc

� �

� q2S
mS

cj j2~A ¼~J : ð18:46Þ

Together, the two conditions are known as the Ginzburg–Landau equations.

We leave it as an exercise (Ex. 4) to show that in cases where the order

parameter is uniform (cð~rÞ ¼ cj jeiyð~rÞ), the second equation (Eq. (18.46)) just

reduces to the London equation. Otherwise, in regions of superconducting

phase where ~A ¼ 0, we find,

1

2mS

�i�h~r
� ��

�

�

�

�

�

2

cþ f21Dtcþ 2f40 cj j2c ¼ 0; ð18:47Þ

or,

�h2

2mS

r2c ¼ � f21Dt þ 2f40 cj j2
� �

c: ð18:48Þ

In the vicinity of Tc, where cj j2 is small, this can be approximated as,

r2c ¼ 2mS

�h2
f21 �Dtð Þc; ð18:49Þ

whose solution in 1D is cðxÞ ¼ cj je�x=x, where,

x ¼ �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mS f21 �Dtð Þ
p / Tc � T

Tc

� ��1=2

: ð18:50Þ
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More generally, if we retain the second, non-linear, term in Eq. (18.48), we find

that the 1D solution for cðxÞ near an interface at x < 0 is,

cðxÞ ¼ f21 �Dtð Þ
2f40

� �1=2

tanh x=
ffiffiffi

2
p

x
� �

; ð18:51Þ

or,

nS ¼ cðxÞj j2 ¼ ceq

�

�

�

�

2
tanh2 x=

ffiffiffi

2
p

x
� �

; ð18:52Þ

provided the boundary conditions are such that cðxÞj j2 ¼ 0 at x 
 0 and

approaches the equilibrium value ceq

�

�

�

�

2
as x ! 1. The variation of cðxÞj j2

traveling away from the boundary is shown in Fig. 18.15 and is illustrative of

how the density of Cooper pairs vanishes on approach to an interface (i.e. a

tube) of normal phase in a Type II superconductor over a distance comparable

to x.

Coherence length

From the first Ginzburg–Landau equation, we find a new length scale, x,

known as the Ginzburg–Landau coherence length. As seen from solutions to

Eq. (18.48) and Eq. (18.49), the coherence length is a measure of how rapidly

cð~rÞ can vary in space, and could be thought of as a measure of the “rigidity”

of the macroscopic wave function of superconducting charges. A small coher-

ence length means that the wave function is very pliable and can be bent

around obstacles in a sharp manner, while a large coherence length implies that

the wave function can only change gradually. In some respects, the coherence

x = 0 x 

ψeq

2

ψ
2

2x

superconducting-like

normal-like

ψ ∝ nS

2

Figure 18.15 The Ginzburg–Landau equation puts limits on how rapidly the superconducting wave function can

change spatially. Near a normal phase interface, this spatial change is limited to that of the

coherence length, x.
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length is similar to the correlation length discussed in Chapter 17. It too

exhibits a divergence near Tc, with the same mean field exponent, n ¼ ½.

The BCS theory also provides a characteristic length scale known as the

intrinsic coherence length,

xo ¼
2�huF

pEg

; ð18:53Þ

where uF is the speed of conduction of electrons near the Fermi surface and Eg

is the superconducting energy gap. This intrinsic coherence length is, in

essence, a measure of the mean extension of a Cooper pair; the distance over

which two coupled electrons remain correlated. Since, as we observed in Eq.

(18.19), the energy gap increases with decreasing temperature, xo develops in a

parallel fashion with the Ginzburg–Landau coherence length, and both diverge

near Tc in the same power law manner.

We can now paint a simple conceptual picture for why the wave function

becomes so rigid and inflexible near Tc. As illustrated in Fig. 18.16, at

temperatures well below Tc there are a great many Cooper pairs and, according

to Eq. (18.37), their density increases with decreasing temperature below Tc.

Here, the intrinsic coherence length is short and we can think of the macro-

scopic wave function like a chain composed of a great many small links (each

link a Cooper pair) that can readily bend on a small radius of curvature and

easily navigate around obstacles. However, as temperature is increased

towards Tc, the intrinsic coherence length increases and the density of Cooper

pairs decreases. The wave function may still span the same region of space, but

is now composed of a small number of large, bulky links that find it increas-

ingly more difficult to bend or accommodate obstacles.

18.3.4 Type II critical fields

Type II superconductors are able to expel an external magnetic field up to

values of Hc1 where the vortex state develops. What then determines this lower

critical field? Let us imagine that we are well below Tc where Hc(T) is large.

Here, the wave function is very pliable and can easily navigate about a tube of

normal phase, without disturbing the equilibrium ceq

�

�

�

�

2
in the bulk of the

remaining superconducting phase. But we know that the free energy density of

the normal phase is not thermodynamically favored below Tc, and the appear-

ance of such a tube of normal phase should not occur unless it somehow

lowers the overall free energy. The solution to this puzzle lies in the fact that

the introduction of a tube produces an interface that can contribute either

positive or negative surface energy. If this new surface energy is sufficiently

negative, the overall free energy can be reduced, making the tube thermo-

dynamically stable. If positive, then the tube would not be allowed to form and

we would be stuck with a Type I behavior.

ξo

T ≈ T
c

T < T
c

T<<T
c

Cooper pair

Figure 18.16

The intrinsic coherence length is

a measure of the extent over

which Cooper pairs are

correlated. This length scale

diverges near Tc as the

population of Cooper pairs

vanishes. Since it is the Cooper

pairs that make up the

superconducting wave function,

this wave function becomes

increasingly more rigid near Tc.
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Lower critical field, Hc1

Consider then the nucleation of a single tube of normal phase in the center of a

slab of superconducting phase of height L, as shown in Fig. 18.17. Shown near

the lower portion of the figure is the spatial variation of both the magnetic field,

which penetrates into the superconducting regions to a distance of l, and the

density of Cooper pairs, which become vanishingly small over a distance x

near the vicinity of the tube. Although both ~Bð~rÞ and cð~rÞvary smoothly near

the tube, let us approximate the situation as though it were a sharp interface in

which both ~Bð~rÞ and cð~rÞ change abruptly at l and x, respectively, as shown

by the shaded regions in Fig. 18.17.

Before the tube appears (at H < Hc1) the total free energy is initially given

by Eq. (18.40) as,

Finit ¼ ~FSðt;ceqÞ þ
moH

2

2

� �

V : ð18:54Þ

S LH < Hc1

Bi

NS
H ≥ Hc1

2r

ξ

λ
nS  =  yeq

2

ns  = 0

B = 0 

Bi 

Figure 18.17 A superconducting slab experiences the nucleation of a vertical tube of normal phase in its

interior. The tube itself has a nominal diameter of 2r, but its magnetic field penetrates into the

surrounding superconductor by a distance l. Simultaneously, the density of Cooper pairs vanishes on

approach to the new interface over a distance equal to the coherence length. The relative size

of both l and x determine whether the surface energy is positive or negative.
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When the tube first appears (at H just above Hc1), the magnetic field

effectively extends out to a radius of r þ l, while the density of Cooper pairs

is virtually zero out to a radius of r þ x. The total free energy in this final

configuration is,

Ffinal ¼ ~FSðt;ceqÞ V � pðr þ xÞ2L
� �

þ moH
2

2
V � pðr þ lÞ2L

� �

þ ~FN ðtÞ pðr þ xÞ2L
� �

:

ð18:55Þ

The net change in free energy on forming the tube is then,

DF ¼ Ffinal � Finit

¼ ~FN ðtÞ � ~FSðt;ceqÞ
h i

pðr þ xÞ2L� moH
2

2
pðr þ lÞ2L

¼ moH
2
c

2


 �

pðr þ xÞ2L� pðr þ lÞ2L moH
2

2
;

ð18:56Þ

where we recall from Eq. (18.41) that the difference in free energy density

between the normal and superconducting phases, ~FN ðtÞ � ~FSðt;ceqÞ, is just

moH
2
c ðTÞ=2.

Now, since the normal phase is not thermodynamically favored below Tc, we

expect this tube will be as small a diameter as it can be, while still providing an

interface. When we let r ! 0, we find,

DF ¼ mopL

2
H2

c x
2 � H2l2

� �

: ð18:57Þ

The tube will be stable only if DF < 0 or,

H2 � x2

l2
H2

c ; ð18:58Þ

and the threshold condition for a tube to form is then set by DF ¼ 0, where,

Hc1 ¼
x

l
Hc ¼ k�1Hc: ð18:59Þ

For Type II behavior to occur, the nucleating field Hc1 must be less than Hc,

and thus for these materials, x < l and k > 1.

One thing that we have neglected in allowing this tube to nucleate is that, in

addition to its surface energy, it also creates magnetic flux passing through the

surrounding superconducting phase. As we observed earlier, such flux is quant-

ized and this places an additional constraint on the external field inside the tube,

moHðpl2Þ � Fo: ð18:60Þ

In careful experiments, it has been shown that each tube in the mixed phase

of the vortex state, no matter how many tubes might appear, individually
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allows only a single quantum (one fluxon) of magnetic flux. With this insight,

we see that,

Hc1 ¼
Fo

mopl
2
; ð18:61Þ

and, with Eq. (18.59),

Hc ¼
Fo

moplx
: ð18:62Þ

Upper critical field, Hc2

As it turns out, the limitation of one quantum of flux per tube allows the

upper critical field, Hc2, to be determined. As the external field is increased to

Hc1, a first tube forms. Since each tube can handle only one fluxon of

magnetic flux, further increases in H result in the formation of additional

tubes (each carrying only one fluxon) and the density of tubes increases. At

some point, the density of tubes will encounter a maximum where, as

illustrated in Fig. 18.18, we can just maintain nC ¼ ceq

�

�

�

�

2
in the surrounding

superconducting regions. This maximum density corresponds to overlapping

of the coherence length extending from neighboring tubes. At this point, the

total number of tubes is,

N � V

px2L
¼ A

px2
; ð18:63Þ

and the total magnetic flux passing through the system is

Ftot ¼ NFo � moHc2A: ð18:64Þ

ψ
2

≈ 2

o

NN NNS SSSS

J 

x

F

Figure 18.18 A cross-sectional view of the tubes shown in Fig. 18.14D near Hc2. When the tube density

reaches a point that their individual coherence lengths overlap, the superconducting state

becomes unstable. Note also, that in this same limit, the counter-propagating current densities

of each vortex begin to cancel out.
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Solving, we find the upper critical field is given as,

Hc2 �
Fo

mopx
2
; ð18:65Þ

or, taking into account Eq. (18.62),

Hc2 �
moplxHc

mopx
2

¼ l

x
Hc ¼ kHc: ð18:66Þ

We see that the two critical fields of the Type II superconductor are each related to

the thermodynamic critical field (Hc) of the underlying superconducting phase.

In each case, the field is chiefly determined by k, the ratio of the penetration

length to the coherence length. By increasing k, we can extend the superconduct-

ing state (with zero resistivity) to fields of very high strength, allowing for the

commercial development of practical superconducting magnets.

18.3.5 High-Tc superconductors

For some years after the development of BCS theory, the highest Tc that could be

obtained was thought to be about 30 K, and limited by the elasticity of the lattice

and the density of electron states near the Fermi level. However, in 1986,

researchers discovered superconductivity in certain cuprate–perovskite ceramic

materials and shortly thereafter obtained Tcs in excess of the boiling point of

liquid nitrogen, a cheaply available cooling medium. The first of these new

“high-Tc superconductors” was YBa2Cu3O7, whose Tc is between 90 and

95 K. Although these materials exhibit all the hallmarks of the superconducting

phase, including the formation of Cooper pairs, the presence of such an enhanced

attractive coupling between electrons poses significant challenges to the BCS

theory. It seems clear that the binding of Cooper pairs in these newmaterials may

be derived from a source of interaction other than that of lattice phonons.

Summary

c Superconductors exhibit zero electrical resistivity.

c In weak magnetic fields (below Hc(T)), magnetic field lines are

expelled from the interior of a superconductor (Meissner effect), except

near the surface, where they may penetrate to a depth of l ¼
ffiffiffiffiffiffiffiffiffiffiffi

mS

moq
2
S
n
S

q

.

c In the absence of an external magnetic field, the superconducting phase

transition is one of second order and displays both a diverging charac-

teristic length scale and laws of corresponding states.
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c In the BCS theory, superconducting charge carriers arise from an

electron–phonon interaction that allows pairs of electrons with opposed

momenta and spin to form into Cooper pairs. The Cooper pairs act

much like bosons and form a coherent, macroscopic superconducting

wave function, cð~rÞ.

c There are two types of superconductors. Type I superconductors exhibit

a complete Meissner effect, expelling magnetic field up to the thermo-

dynamic critical field, Hc(T). Type II superconductors exhibit an

incomplete Meissner effect due to the nucleation of regions of normal

phase. For Type II superconductivity to occur, k ¼ l
x
> 1.

Exercises

18.1. Derive Eq. (18.3) relating the current density and electric field in an

ideal conductor.

18.2. Derive Eq. (18.12) for the current density near the surface of a super-

conductor in an external field.

18.3. Show that near Tc, the critical field given by quadratic form in Eq.

(18.16) varies in a linear manner as HcðTÞ � 2Hcð0ÞðTc � TÞ=Tc.
18.4. Show that the second Ginzburg–Landau equation (Eq. (18.46)) just

reduces to the London equation in cases where the order parameter is

uniform (cð~rÞ ¼ cj jeiyð~rÞ).
18.5. Consider an infinite 2D slab of superconducting material of thickness 2d

aligned perpendicular to the y-axis as shown in Fig. 18.19 with a

uniform magnetic field of Ho applied along the z-axis.

(a) Taking as the boundary condition that the parallel component of

~B ¼ mo~H be continuous at either surface, show that within the

superconductor, ~B ¼ moHo

coshðy=lÞ
coshðd=lÞ ẑ, and the corresponding

current density is

~J ¼ Ho

l

sinhðy=lÞ
coshðd=lÞ x̂:

(b) The magnetization at a point within the slab is ~M ¼ ~B=mo � ~Ho.

Show that the net magnetization (averaged over the thickness of the

slab) is

~M
	 


¼ �~Ho 1� l

d
tanh

d

l

� �� �

:

(c) Show that when the slab is much thicker than the penetration length

(d >> l), the susceptibility approaches that of a perfect diamagnet,
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while when the slab is thinner than the penetration length (d << l),

the susceptibility vanishes like w ¼ @ ~M
	 


=@Ho � � d2

3l2
.

18.6. The thermodynamic state of a superconductor is determined by both

the temperature and magnitude of an applied magnetic field, H.

Assuming the volume remains constant, changes in the Helmholtz

free energy density are given as d~F ¼ �~SdT � moMdH , where ~S is

the entropy density. The coexistence curve, which separates the

superconducting (S) and normal (N) phase, is given by the curve in

Fig. 8.4.

(a) Show that for any point on this coexistence curve, the slope of the

curve is given by

dHc

dT
¼ 1

mo

~SN � ~SS

MS �MN

:

(b) Given that the normal phase has negligible (wm � 10�6) dia-

magnetism, while the superconducting state behaves as a perfect

ˆ x ˆ y 

ˆ z 

y = – d y = + d

HoHo

slab

Figure 18.19
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diamagnet, show from the result of part (a) above that the entropy is

discontinuous by an amount

~SN � ~SS ¼ �moHc

dHc

dT
;

and that the latent heat per volume, ~L ¼ TD~S, when the transition

occurs in a finite field, is

~L ¼ �moTHc

dHc

dT
:

(c) Show that when the transition occurs at zero field (at Tc) the specific

heat exhibits a discontinuity given by

CN � CS

V
¼ �moT

dHc

dT

� �2

:
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Appendix: Toolbox

Most of the material covered in this textbook can be understood without any

additional prerequisite coursework other than that usually afforded by an

introductory physics course that includes modern physics topics (harmonic

oscillators and particle-in-a-box). In some places, concepts are drawn liberally

from thermodynamics and statistical mechanics and considerable use is made

of complex notation for describing waves, as well as considerable emphasis on

Fourier transforms (albeit mostly at a conceptual level). While it is hoped that

the reader is already well acquainted with these concepts, this is likely not to be

the case for every reader and as an aid, this “toolbox” is included as a handy

appendix to some of the relevant mathematical and theoretical background that

appears within the textbook.

A.1 Complex notation

Complex notation is a very useful form of shorthand for dealing with the manipula-

tion of trigonometric functions and is often used to describe propagating waves.

A complex number is very much like a two-dimensional vector; it has two compon-

ents, one that is “real” and the other that is “imaginary”. Oneway inwhichwe convey

the “complex” aspect of the complex number z is to write it out as the vector sum

z ¼ xþ iy; ðA1:1Þ

where x represents the magnitude of the real component, y the magnitude of the

imaginary component and i 	
ffiffiffiffiffiffiffi

�1
p

: These associations are often expressed

using “Re[]” and “Im[]” as

x ¼ Re z½ �
y ¼ Im z½ � ðA1:2Þ

Since the complex number z is identical to a two-dimensional vector, an

alternative means for describing z is to use a form of polar coordinates, as

illustrated in Fig. A1.1. In polar coordinates, the components of z can be

expressed as

x ¼ Re z½ � ¼ A cosf

y ¼ Im z½ � ¼ A sinf
ðA1:3Þ
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Now here is where the shorthand feature begins. There is an important

relationship between the mathematical properties of the exponential function

and those of the two trigonometric functions, known as Euler’s equation:

eif ¼ cosfþ i sinf ðA1:4Þ

Returning to our graphical representation of the complex number z in

Fig. A1.1, we see that we can then express any complex quantity as,

z ¼ xþ iy ¼ A cosfþ iA sinf ¼ Aeif: ðA1:5Þ

A.1.1 Trigonometric identities

To demonstrate how this shorthand notation can simplify trigonometric

manipulations, consider the trigonometric identity

cosðaþ bÞ ¼ cos a cos b� sin a sin b:

To prove this identity using geometry is painful, but it is remarkably easy to

prove using our shorthand notation. We see that the left-hand side is just the

real part of the corresponding exponential,

cosðaþ bÞ ¼ Re eiðaþbÞ
h i

;

which can be expanded using the Euler formula as,

eiðaþbÞ ¼ eiaeib ¼ ðcos aþ i sin aÞðcos bþ i sin bÞ
¼ cos a cos bþ i cos a sin bþ i sin a cos b� sin a sin b:

Taking only the real part of this last expression, we obtain the desired

identity.

A.1.2 Other items

A.1.2.1 Complex conjugate

The complex conjugate of z is denoted by an asterisk, z*, and is obtained

merely by replacing every occurrence of i in z by –i,

z ¼ Aeif ) z
 ¼ Ae�if ðA1:6Þ

A.1.2.2 Modulus

The modulus of a complex number is a representation of its vector magnitude

and is obtained by square rooting the result of the product of z and its complex

conjugate. The result is always a purely real number,

zj j ¼
ffiffiffiffiffiffi

zz

p

¼ A ðA1:7Þ

Im

Re

A 

f 

x

y

Figure A1.1

Representation of a complex

number as a vector in either

Cartesian or polar coordinates.

The horizontal axis represents

the real part of the complex

number and the vertical axis

represents the imaginary part.
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A.1.2.3 Angular equivalents

A little reflection on the polar diagram in Fig. A1.1 reveals that, for certain

angles f the exponential returns either a purely real or purely imaginary value,

e�inp ¼ þ1 if n is even

�1 if n is odd

�

and e�ip=2 ¼ � i: ðA1:8Þ

An important item to remember with complex notion is that in many publica-

tions the shorthand is used without the “Re[]” and “Im[]” indicated. In these

instances, the convention is that the final result of the manipulation is obtained

by taking the real part of the corresponding complex quantity.

A.2 Wave notation

A large portion of this textbook is devoted to the scattering of waves by matter,

so let us now clarify how a propagating wave is described using our complex

notation shorthand. For a simple one-dimensional wave of frequency f and

wavelength l traveling in the positive x direction, the wave function is

generally given as,

cðx; tÞ ¼ A cosðkx� ot þ dÞ; ðA2:1Þ

where k = 2p / l, o = 2p f and d is an arbitrary phase angle. This wave then

travels with a speed u = f l = o / k. In the complex notation (with the Re[]

being suppressed or omitted) this wave is written as,

cðx; tÞ ¼ Aeiðkx�otþdÞ ¼ Aeif; ðA2:2Þ

where f is the total phase angle of the wave at position x and time t.

Next, we extend this notation to three-dimensional waves that are known as

plane waves. These are waves that travel along a fixed direction of propagation

parallel to the three-dimensional wave vector~k and display a common value at

all points in any plane perpendicular to ~k: For this to happen the total phase

angle, f, must be common for every point in the plane at any given instant in

time. This then means that the spatial portion of the total phase angle at any

point in the plane is a constant, or that

fr ¼~k �~r ¼ constant;

where~r is the position vector that describes any arbitrary point in space, as

shown in Fig. A2.1. Hence the overall wave function describing a plane

wave traveling along the direction ~k at a speed given by u = f l = o / k,

would be,

cð~r; tÞ ¼ Aeið
~k�~r�otþdÞ: ðA2:3Þ

k 

r 

planes of

fixed phase

Figure A2.1

A plane wave is defined by

planes of common phase. The

location of these planes is

determined by the projection

(~k �~r) of the position vector
onto the wave vector.
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A.3 Fourier analysis

A repeated theme found throughout the textbook is the notion that information

concerning the structure or dynamics of a material is related by Fourier

transformations to corresponding information in the scattering patterns. To

develop some understanding behind the transformation, we begin with a

simple example of Fourier analysis.

Suppose a musician plays a single sustained note on a clarinet, which is

then recorded. If we play back the recorded signal into a strip chart recorder

or other device that could produce a plot of the sound pressure versus time,

we would see something like that shown in Fig. A3.1a. The P(t) graph

consists of a repeating pattern with an internal structure. The internal

structure arises from the resonant nature of the clarinet which, in addition

to the fundamental tone, o, contains additional overtones at higher frequen-

cies such as 2o, 3o, 4o, etc., in varying amplitudes, as illustrated in

Fig. A3.1b. The same tone played on, say, an oboe, would appear with a

different internal structure because the amplitudes of the various overtones

are different.

Since the P(t) in the first figure is just the result of mixing together of the

fundamental and overtones for a given frequency o, each with different

amplitudes, we could synthesize the same P(t) using several electronic fre-

quency generators (at o, 2 o, 3 o, etc.) each adjusted to amplitudes, P(o), that

correspond to those in the second figure. This is the fundamental idea behind a

Fourier transformation: both P(t) and P(o) contain the same amount of infor-

mation and both provide equivalent descriptions of a clarinet playing a sus-

tained note.
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(a)

(b)

wo 2wo 3wo 4wo 5wo 6wo

Figure A3.1 Example of sound produced by a sustained note played by a musical instrument. (a) The

time-dependent pressure signal as recorded by a detector exhibiting a repeated pattern. (b)

Illustration of how the corresponding Fourier components might appear as harmonics of

differing magnitude.
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A.3.1 Fourier series

Our example above illustrates that any periodic waveform, f(t), can be recon-

structed by an appropriate combination of single frequency waves of pre-

scribed amplitudes,

f ðtÞ ¼ Ao

2
þ
X

1

m¼1

Am cosðmotÞ þ
X

1

m¼1

Bm sinðmotÞ; ðA3:1Þ

known as a Fourier series. All we require then are the set of amplitudes, Ao, Am

and Bm. The recipe for obtaining these unknown amplitudes relies on the

particular orthogonality properties of the two trigonometric functions that

emerge when integrated over a complete cycle, T = 2p / o:

ð

T

0

sinðmotÞ dt ¼
ð

T

0

cosðmotÞ dt ¼
ð

T

0

sinðmotÞ cosðnotÞ dt ¼ 0; ðA3:2Þ

and,

ð

T

0

sinðmotÞ sinðnotÞ dt ¼
ð

T

0

cosðmotÞ cosðnotÞ dt ¼ T

2
dmn; ðA3:3Þ

where the Kronecker delta function is defined by,

dmn 	
0 if m 6¼ n

1 if m¼ n:

�

ðA3:4Þ

Applying these to Eq. (A3.1), the amplitudes are then given by,

Ao ¼
2

T

ð

T

0

f ðtÞdt;

Am ¼ 2

T

ð

T

0

f ðtÞ cosðmotÞdt;

Bm ¼ 2

T

ð

T

0

f ðtÞ sinðmotÞdt

ðA3:5Þ

A3.2 Fourier transforms

As an important example of using Fourier series, consider the square wave

shown in Fig. A3.2a that is periodic but non-harmonic. Following the above

recipe, one obtains,
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f ðtÞ ¼ 1

2n
þ 1

n

X

1

m¼1

sinc m
p

2

o

oo

� �

cos motð Þ; ðA3:6Þ

where sinc x 	 sin x/x. Now consider what happens as the “pulse” width, To/2,

remains fixed, while the period between pulses increases as n is systematically

increased from 1 to 2 to 4. The progression is shown in Figs. A3.2b through

A3.2d for the corresponding coefficients, Am. What do we see? As n! 1, we

(a) lose the sense of periodicity in f(t) and develop only a single, very narrow,

pulse occurring at t ¼ 0; (b) increase the number of terms needed in the

summation and develop an increasingly more “dense” set of frequencies, and

(c) approach a continuum of Ams, illustrated in Fig. A3.2e, that are better

expressed as a function of o, A(o). In this continuum limit, the Fourier series is

replaced by the Fourier transform:

f ðtÞ ¼
ð

1

0

AðoÞ cosðotÞdoþ
ð

1

0

BðoÞ sinðotÞdo; ðA3:7Þ

whose amplitude functions, A(o) and B(o) are given by,

AðoÞ ¼ 1

p

ð

1

�1

f ðtÞ cosðotÞdt

BðoÞ ¼ 1

p

ð

1

�1

f ðtÞ sinðotÞdt:

ðA3:8Þ

nAm

nAm nAm

nAm

n = 1

n = 4 n = ∞

n = 2

To / 2 nTo

w/wo

w/wo w/wo

w/wo

(a)

(b) (c)

(d) (e)

Figure A3.2 Top figure (a) shows the repeated pulse pattern occurring as a function of time. Lower figures (b through e)

show the corresponding Fourier components. As the interval between pulses increases with

increasing n, a greater density of Fourier components is required to describe the waveform approaching

a continuum in the limit that the waveform assumes the properties of a single pulse.
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As an example of the Fourier transform, let’s look at a simple squarewave pulse,

f ðtÞ ¼ 1 for � To
4
<t< To

4

0 otherwise

�

:

Firstly, as we have defined the time origin, this f(t) is an even function.

Therefore, there are no sine contributions and so B(o) ¼ 0. This leaves us

with only the Fourier cosine transform,

AðoÞ ¼ 1

p

ð

1

�1

f ðtÞ cosðotÞdt ¼ 1

p

ð

þTo=4

�To=4

cosðotÞdt:

This can be shown to reduce to,

AðoÞ ¼ To

2p
sinc

oTo

4

� �

;

which is just seen to be the continuum result corresponding with the discrete

situation in Eq. (A3.6) and illustrated in Fig. A3.2.

Although the Fourier transforms above are developed in reference to a time-

dependent function f(t) synthesized by the time-dependent oscillating functions

sin(ot) and cos(ot), we could have equally well developed the Fourier trans-

form to describe space-dependent functions, f(x), described by the space-

dependent oscillating functions sin(kx) and cos(kx), for which,

f ðxÞ ¼
ð

1

0

AðkÞ cosðkxÞdk þ
ð

1

0

BðkÞ sinðkxÞdk; ðA3:9Þ

where,

AðkÞ ¼ 1

p

ð

1

�1

f ðxÞ cosðkxÞdx

BðkÞ ¼ 1

p

ð

1

�1

f ðxÞ sinðkxÞdx:

ðA3:10Þ

In either case, information contained in space (x) or time (t) is transformed into

an equivalent measure of information contained in wave vector (k) or angular

frequency (o), respectively.

A.3.3 Fourier transforms expressed in complex notation

To show how these Fourier transforms will appear when complex notation is

used, we begin by substituting our expressions for A(k) and B(k) (Eq. (A3.10))

back into Eq. (A3.9) to obtain,
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f ðxÞ ¼ 1

p

ð

1

k¼0

cosðkxÞ
ð

1

x0¼�1

f ðx0Þ cosðkx0Þdx0
2

4

3

5dk

8

<

:

þ
ð

1

0

sinðkxÞ
ð

1

x0¼�1

f ðx0Þ sinðkx0Þdx0
2

4

3

5dk

)

;

which, after some rearranging, becomes,

f ðxÞ ¼ 1

p

ð

1

k¼0

ð

1

x0¼�1

f ðx0Þ cosðkx0Þ cosðkxÞ þ sinðkx0Þ sinðkxÞ½ �dx0dk

8

<

:

9

=

;

:

ðA3:11Þ

Now we recall the following trigonometric identity:

cos kðx0 � xÞ½ � ¼ cos kx cos kx0 þ sin kx sin kx0;

which allows Eq. (A3.11) to be rewritten as,

f ðxÞ ¼ 1

p

ð

1

k¼0

ð

1

x0¼�1

f ðx0Þ cos kðx0 � xÞð Þdx0
2

4

3

5 dk

8

<

:

9

=

;

: ðA3:12Þ

Since the quantity inside the square brackets is an even function of k, we can

replace the limits of the integration over dk to run from k ¼�1 to 1 instead

of 0 to 1 giving,

f ðxÞ ¼ 1

2p

ð

1

k¼�1

ð

1

x0¼�1

f ðx0Þ cos kðx0 � xÞð Þdx0
2

4

3

5 dk

8

<

:

9

=

;

: ðA3:13Þ

Next we add zero to this result, but in a creative way! Consider the quantity,

i

2p

ð

1

k¼�1

ð

1

x0¼�1

f ðx0Þ sin kðx0 � xÞð Þdx0
2

4

3

5 dk

8

<

:

9

=

;

: ðA3:14Þ

Since the quantity inside the square brackets is an odd function of k, the first

half of the integral running from k ¼�1 to 0 must exactly cancel with the last

half from k ¼ 0 to +1. Thus the entire quantity in Eq. (A3.14) is identically

zero. If we add this ‘zero’ onto our last result (Eq. (A3.13)),

f ðxÞ ¼ 1

2p

ð

1

k¼�1

ð

1

x0¼�1

f ðx0Þ cos kðx0 � xÞð Þdx0
2

4

3

5 dk

8

<

:

9

=

;

þ i

2p

ð

1

k¼�1

ð

1

x0¼�1

f ðx0Þ sin kðx0 � xÞð Þdx0
2

4

3

5 dk

8

<

:

9

=

;

;
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we can rearrange to obtain,

f ðxÞ ¼ 1

2p

ð

1

k¼�1

ð

1

x0¼�1

f ðx0Þ cos kðx0 � xÞð Þ þ i sin kðx0 � xÞð Þ½ �dx0
2

4

3

5 dk

8

<

:

9

=

;

;

which, with Euler’s relationship becomes,

f ðxÞ ¼ 1

2p

ð

1

k¼�1

ð

1

x0¼�1

f ðx0Þeikx0dx0
2

4

3

5 e�ikxdk

8

<

:

9

=

;

¼ 1

2p

ð

1

k¼�1

FðkÞ e�ikxdk

8

<

:

9

=

;

:

Thus the Fourier transform can be expressed in complex notation as,

f ðxÞ ¼ 1

2p

ð

1

k¼�1

FðkÞ e�ikxdk; ðA3:15Þ

and the inverse Fourier transform that provides the amplitudes as,

FðkÞ ¼
ð

1

x¼�1

f ðxÞ eþikxdx: ðA3:16Þ

The functions f (x) and F(k) are referred to as Fourier transform pairs because,

as we have emphasized earlier, each contains identical amounts of information.

A similar set of Fourier transform pairs can be developed for time-dependent

functions as,

f ðtÞ ¼ 1

2p

ð

1

o¼�1

FðoÞ e�iotdo

FðoÞ ¼
ð

1

t¼�1

f ðtÞ eþiotdt:

ðA3:17Þ

As an example of the Fourier transform, let us evaluate the Fourier trans-

form of the Gaussian function, f ðxÞ ¼ e�x2=a2 :

FðkÞ ¼
ð

1

x¼�1

f ðxÞ eþikxdx ¼
ð

1

x¼�1

e�x2=a2 eþikxdx:

We use the Euler formula to separate this into real and imaginary parts as

FðkÞ ¼
ð

1

x¼�1

e�x2=a2 cos kxþ i sin kxð Þ dx

¼
ð

1

x¼�1

e�x2=a2 cos kx dxþ i

ð

1

x¼�1

e�x2=a2 sin kx dx:
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In the second integral, the integrand is an odd function of x that must vanish

when integrated over all x. In the first integral, the integrand is an even

function of x and for this integral we can replace the limits as

FðkÞ ¼
ð

1

x¼�1

e�x2=a2 cos kx dx ¼ 2

ð

1

x¼0

e�x2=a2 cos kx dx ¼
ffiffiffi

p
p

ae�k2a2=4:

Note that the Gaussian function is somewhat unique in that its Fourier

transform is itself another Gaussian function.

A.3.4 Extension of Fourier transforms to higher dimensions

In three dimensions, the above spatial Fourier transforms become:

f ðx; y; zÞ ¼ 1

2pð Þ3
ð

1

kx¼�1

ð

1

ky¼�1

ð

1

kz¼�1

Fðkx; ky; kzÞ e�iðkxxþkyyþkzzÞdkxdkydkz;

Fðkx; ky; kzÞ ¼
ð

1

x¼�1

ð

1

y¼�1

ð

1

z¼�1

f ðx; y; zÞ eþiðkxxþkyyþkzzÞdxdy dz:

If we think of kx, ky and kz as the coordinates of some “k-space” similar to x, y

and z in real space, then we could tidy up these last two expressions to read,

f ð~rÞ ¼ 1

2pð Þ3
ð

1

�1

Fð~kÞ e�ið~k�~rÞd3~k

Fð~kÞ ¼
ð

1

�1

f ð~rÞ eþið~k�~rÞd3~r;

ðA3:18Þ

where d3~r and d3~k represent volume elements in real space and k-space,

respectively.

A.4 The Dirac delta function

There is an important but improper function known as the Dirac delta function

that appears frequently in the textbook. The Dirac delta function is defined by

two properties. Firstly, it is a function of some variable, x, such that

dðx� xoÞ 	
0 if x 6¼ xo
1 if x ¼ xo:

�

ðA4:1Þ
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Secondly, the area under the curve of d(x�xo) is normalized to unity,

ð

1

�1

dðx� xoÞdx ¼ 1: ðA4:2Þ

Although the function is ill-defined, we can visualize it as looking something

like a very sharp spike that occurs at x¼ xo and falls rapidly away to zero as we

move away from xo, as illustrated in Fig. A4.1.

Since the Dirac delta function is zero at points other than xo, it also follows

that the integral (Eq. (A4.2)) need not extend all the way to infinity, but merely

needs to encompass the point xo,

ð

xoþe

xo�e

dðx� xoÞdx ¼ 1:

Similarly, when multiplied with any arbitrary function f (x), the result is non-

zero only in the vicinity of xo, where the Dirac delta function is non-zero.

Hence, integrating the product,

ð

1

�1

f ðxÞdðx� xoÞdx ffi f ðxoÞ
ð

1

�1

dðx� xoÞdx ¼ f ðxoÞ;

just returns the arbitrary function evaluated at xo.

The Dirac delta function is readily extended to three dimensions as,

dðx� xoÞdðy� yoÞdðz� zoÞ 	 1 if x ¼ xo and y ¼ yo and z ¼ zo
0 otherwise

n

;

with,

ð

1

x¼�1

ð

1

y¼�1

ð

1

z¼�1

dðx� xoÞdðy� yoÞdðz� zoÞdx dy dz¼ 1;

f(x)

d(x–xo)

xo x

Figure A4.1 Pictorial representation of a Dirac delta function (shaded peak) together with an arbitrary

function f(x).
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and,

ð

1

x¼�1

ð

1

y¼�1

ð

1

z¼�1

f ðx; y; zÞdðx� xoÞdðy� yoÞdðz� zoÞdx dy dz¼ f ðxo; yo; zoÞ;

or, more compactly,

ð

1

�1

f ð~rÞdð~r �~roÞd3~r ¼ f ð~roÞ: ðA4:3Þ

One common application of the Dirac delta function, used extensively in the

textbook, is the definition of a discrete particle number density, nð~rÞ:

nð~rÞ ¼
X

N

i¼1

dð~r �~riÞ; ðA4:4Þ

whose validity is seen by integrating over all the N particles as,

ð

particles

nð~rÞd3~r ¼
X

N

i¼1

ð

particles

dð~r �~riÞd3~r ¼
X

N

i¼1

1 ¼ N :

A.4.1 Dirac delta functions and Fourier transforms

Recall the one-dimensional Fourier transform pairs (Eq. (A3.15) and Eq.

(A3.16)) we introduced earlier. When we substitute the second equation into

the first we obtain,

f ðxÞ ¼ 1

2p

ð

1

k¼�1

ð

1

x0¼�1

f ðx0Þeþikx0dx0

2

4

3

5 e�ikxdk

¼
ð

1

x0¼�1

1

2p

ð

1

k¼�1

e�ikðx�x0Þdk

2

4

3

5f ðx0Þdx0:

Apparently, for this to bemeaningful in the light of Eq. (A4.3), the quantity in square

brackets must be equivalent to the one-dimensional Dirac delta function! Thus we

find that we can express the Dirac delta function in our complex notation as,

dðx� x0Þ 	 1

2p

ð

1

k¼�1

e�ikðx�x0Þdk: ðA4:5Þ

Furthermore, since x and x0 merely represent dummy variables, we could

readily exchange them such that d(x�x0) = d(x0�x). As a consequence, the

Dirac delta function is
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dðxÞ ¼ 1

2p

ð

1

k¼�1

e�ikxdk ¼ 1

2p

ð

1

k¼�1

eþikxdk: ðA4:6Þ

That is, the Fourier transform of unity is just the Dirac delta function! Con-

versely, the inverse Fourier transform of a Dirac delta function,

FðkÞ ¼
ð

1

x¼�1

dðxÞeþikxdx ¼ e0 ¼ 1; ðA4:7Þ

is unity. These two Fourier transform pairs (Eq. (A4.6) and Eq. (A4.7)) appear

frequently in the textbook.

A.5 Elements of thermodynamics

A.5.1 First and second laws

Thermodynamics was developed to explain the gross behavior of systems

containing large numbers of particles. At equilibrium, such a system is

described by an equation of state, which is a function of all the relevant state

variables (e.g. pressure, temperature, number density, etc.) of the form,

f ðP; T ; n; � � �Þ ¼ 0: ðA5:1Þ

A familiar example is the ideal gas law for a system of non-interacting point

particles,

n� P=kBT ¼ 0; or n ¼ P=kBT :

Beyond this, the bulk of thermodynamics boils down to two fundamental

laws that govern how a system behaves during processes in which one or more

state variables change. The first law of thermodynamics basically states that

energy is neither created nor destroyed during any process but only changes

form. For a system of particles at equilibrium, there is some quantity of internal

energy, U. This energy is stored in the system of particles in the form of energy

that each particle may have individually (such as kinetic energy) and potential

energy stored in the form of interactions between the particles or with an

external field. In order for this internal energy to change, energy must be

introduced or withdrawn from the system and there are two main mechanisms

for this transfer. Either some form of mechanical work dW can be performed

on the system or some quantity of heat dQ can be transferred to the system.

Thus the first law is formally stated as

dU ¼ dQþ dW : ðA5:2Þ
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Now there are actually a number of ways in which work could be performed

on the system. Most common is the work done by pressure when a system

increases or decreases in volume,

dW ¼ �PdV : ðA5:3Þ

But a similar type of work is performed in, say, a magnetic system whenever

the magnetization, M, increases in the presence of a fixed external field, H,

dW ¼ HdM : ðA5:4Þ

Unlike work, heat is a bit of an oddity in that whenever it flows into or

out of a system it carries along with it an amount of stuff called “entropy”,

S. For example, when two systems at different temperatures are placed into

thermal contact, as illustrated in Fig. A5.1, heat flows from the warm

system (at T1) into the cooler system (at T2). However, for each amount

of dQ that leaves the warm system, its entropy decreases by an amount

dS1¼�dQ/T1, while the same amount of heat entering the cooler system

causes its entropy to increase by dS2 = dQ/T2. For the two systems as a

whole, the total entropy has increased because of the heat flow. Although

heat is neither created nor destroyed, this entropy stuff appears to develop

from nowhere. Indeed, it is this tendency for entropy to be magically

produced during processes that forms the second law of thermodynamics:

“Entropy tends to increase”.

The above discussion allows us to express the first law somewhat differ-

ently, in the form of what is often called the thermodynamic identity

dU ¼ TdS � PdV ðfluids; gasesÞ
dU ¼ TdS þ HdM ðmagneticÞ:

ðA5:5Þ

T1 T2

dS1 dS2

dQ dQ

Figure A5.1 An isolated container with two systems in thermal contact. For every small exchange of heat

moving from the warmer system (1) to the cooler system (2), a smaller amount of entropy

exits system 1 than enters system 2. Although heat is conserved in the process, new entropy is

created.
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A.5.2 The free energies

During its development, thermodynamics has spawned a number of special

functions of the state variables known as thermodynamic potentials or free

energies. The most common examples include the enthalpy,

H ¼ U þ PV ; ðA5:6Þ

the Helmholtz free energy,

F ¼ U � TS; ðA5:7Þ

and the Gibbs free energy,

G ¼ U � TS þ PV : ðA5:8Þ

Like potentials, the utility of these functions lies not so much in the actual

values they have, but in the amount by which they change when a system

undergoes a process from one set of state variables to another. For example,

when a system moves from state 1 to state 2, the enthalpy change is

DH ¼ H2 � H1 ¼ U2 � U1ð Þ þ P2V2 � P1V1ð Þ:

It is important to notice that the change in the quantity PV in the second term is

NOT the work performed during the process. As is illustrated in Fig. A5.2,

both the work and the heat are path dependent quantities.

Another endearing feature of these thermodynamic potentials emerges when

they are combined with the thermodynamic identity in Eq. (A5.5). As an

example, consider the enthalpy whose incremental change is given by

dH ¼ dU þ PdV þ VdP:

Upon introducing the thermodynamic identity, this reduces to

dH ¼ TdS þ VdP ) HðS;PÞ: ðA5:9Þ

This result tells us two things. Firstly that H is really only a function of two

state variables, H(S,P), and secondly, that for a process occurring at a fixed

pressure, the change in H equals the heat transfer. By a similar means, one can

show that for the other thermodynamic potentials,

dF ¼ �SdT � PdV ) FðT ;V Þ; ðA5:10Þ

dG ¼ �SdT þ VdP ) GðT ;PÞ: ðA5:11Þ

A.5.3 Free energy and the second law

In our earlier example, we observed that when two systems at different

temperature are allowed to exchange energy, one loses entropy while the

P

V

A

B

1

2

W
2
>W

1

T

S

A

B

1

2

Q
2
>Q

1

Figure A5.2

The amount of work performed

or heat exchanged during a

thermodynamic process depends

on the path taken. In the

upper figure, we see that the

work performed on the system is

larger in going from point A to

point B along path 2 than along

path 1. Similarly, in the

lower figure, we see that the

heat entering the system is

larger in going from point A to

point B along path 2 than along

path 1.
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other gains entropy. Furthermore, the gain by the one exceeds the loss from

the other and their approach to equilibrium is accompanied by a net

production of entropy. This is the second law that applies to the two

systems as a whole when they are isolated from the rest of the universe.

But suppose we are interested in just a single system whose only contact is

that with the rest of the universe, or, more reasonably, in contact with a

sizeable subsection of the universe, which we might describe as a “reser-

voir”. What does the second law imply about how this system approaches

equilibrium?

Imagine our system is at the same temperature and pressure as its surround-

ings and is able to exchange both energy and volume, as illustrated in

Fig. A5.3. The second law implies that,

dSTOT ¼ dS þ dSR ¼ dS þ dUR

T
þ P

T
dVR

� �

� 0;

where the thermodynamic identity of Eq. (A5.5), has been applied for the

reservoir. Now because the source of any dUR or dVR comes from the system,

it reasons that dUR¼�dU and dVR¼�dV, so that,

dSTOT ¼ dS þ �dU

T
� P

T
dV

� �

¼ � 1

T
dU � TdS þ PdVð Þ ¼ � dG

T
:

ðA5:12Þ

Here we see another useful quality of the free energy. In any process, the

demand by the second law for net production of entropy translates into a

corresponding demand for minimization of the free energy of the system alone.

dV

dU

System

P, T

P, T

Reservoir

Figure A5.3 A single system is in thermal and mechanical contact with a reservoir (representing the rest of

the universe). During exchanges of energy or volume, the second law requires that the total

entropy of the two systems combined either remains unchanged or increases.
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A.6 Statistical mechanics

A.6.1 Microstates and macrostates

Classical thermodynamics offers little in the way of interpreting what this

entropy stuff really is. To obtain a better sense of it, one needs to explore the

foundations of statistical mechanics, wherein the thermodynamics is built

from the ground up, by examining the multitude of possible configurations

that a system of particles might assume. Each of these configurations is known

as a microstate and any subset of these that shares a common collective

property (e.g. total energy) is known as a macrostate. As a more concrete

example, consider a simple two-state model of N ¼ 3 magnetic moments

placed in a magnetic field, as illustrated in Fig. A6.1. By two-state, we mean

that the moments are restricted to be either up or down with respect to the field

direction and the orientation of each moment contributes to the total energy an

amount E ¼ 0, if the moment is opposed to the field and E ¼ e when it is

E = 3e

E = 2e

E = 0

E = emicrostate

macrostate

H

W = 1

W = 3

W = 3

W = 1

Figure A6.1 A system consisting of three magnetic moments interacting with an external magnetic field, H.

There are a total of eight distinct microstates derived from the possible ways in which the three

moments can be oriented. Of these, there are four possible macrostates associated with the

net magnetization or total energy.
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aligned with the field. From Fig. A6.1 we see that for this system there are a

total of eight microstates and four allowed macrostates, defined by their

common total energy. For each of the macrostates characterized by Nu upward

moments, there are

W ðU ¼ NueÞ ¼
N!

Nu! N � Nuð Þ! ; ðA6:1Þ

possible microstates, and in statistical mechanics the entropy associated with

any given macrostate is

S ¼ kB lnW ; ðA6:2Þ

where kB ¼ 1.38 � 10�23 J/K is the Boltzmann constant.

A.6.2 The Boltzmann factor

The fundamental assumption of statistical mechanics is that the system is

equally likely to be in any one of the microstates corresponding to a given

macrostate, but that the probability that the system is in a given macrostate is

proportional to a so-called Boltzmann factor,

PðEÞ / e�E=kBT : ðA6:3Þ

This expresses the notion that the probability of a given macrostate of energy E

depends upon the available thermal energy, kBT, present in the system and

increases with increasing temperature. The Boltzmann factor is particularly

useful in conjunction with the partition function,

Z ¼
X

i

e�Ei=kBT ; ðA6:4Þ

which is a sum of Boltzmann factors, one term for each and every microstate.

The partition function allows for proper normalization of the probability in Eq.

(A6.3), and the average value of any quantity of interest, X, can be expressed as

Xh i ¼
X

i

XiPðEiÞ ¼
1

Z

X

i

Xie
�Ei=kBT : ðA6:5Þ

By way of an example, we can determine the average energy of our two-state

model, which would be given by,

U ¼ Eh i ¼ 1

Z

X

i

Eie
�Ei=kBT

¼ 3ee�3e=kBT þ 3 � 2ee�2e=kBT þ 3 � 1ee�1e=kBT

e�3e=kBT þ 3e�2e=kBT þ 3e�1e=kBT þ 1
¼ kBT

2 @ ln Z

@T
:

ðA6:6Þ

381 A.6 Statistical mechanics



A.7 Common integrals

ðþ1

�1
e�ax2dx ¼

ffiffiffi

p

a

r

ðA7:1Þ

ðþ1

�1
x2ne�ax2dx ¼ 1� 3� 5 � � � ð2n� 1Þ

2nan

ffiffiffi

p

a

r

ðA7:2Þ

ðþ1

�1
x2nþ1e�ax2dx ¼ 0 ðA7:3Þ

ðþ1

0

xne�axdx ¼ n!

anþ1
ðA7:4Þ

ðþ1

0

xp�1

ex � 1
dx ¼ GðpÞzðpÞ; p > 0 ðA7:5Þ

where GðpÞ 	
Ðþ1
0

xp�1e�xdx; and zðpÞ 	
P

1

n¼1

n�p:

For n a positive integer: G(n + 1) = nG(n) = n!

Selected values of interest include:

Gð1=2Þ ¼ ffiffiffi

p
p

Gð3=2Þ ¼ ffiffiffi

p
p

=2

zð1Þ ¼ 1 zð3=2Þ ¼ 2:612

zð2Þ ¼ p
2=6 ¼ 1:645 zð5=2Þ ¼ 1:341

zð3Þ ¼ 1:202 zð7=2Þ ¼ 1:127

zð4Þ ¼ p4=90 ¼ 1:082 zð9=2Þ ¼ 1:055

ðþ1

0

x3

ex � 1
dx ¼ p

4

15
ðA7:6Þ

ðþ1

0

x4ex

ex � 1ð Þ2
dx ¼ 4p4

15
ðA7:7Þ

ðþ1

0

x2ex

ex þ 1ð Þ2
dx ¼ p

2

6
ðA7:8Þ

ðþ1

�1

x2ex

ex þ 1ð Þ2
dx ¼ p

2

3
ðA7:9Þ

ðþ1

�1

ex

ex þ 1ð Þ2
dx ¼ 1 ðA7:10Þ
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Glossary

A lattice spacing

~a1 unit lattice vector

~a2 unit lattice vector

~a3 unit lattice vector

A area

A, B elastic wave amplitudes of diatomic modes

~A vector potential

b renormalization scale factor

~b1 unit reciprocal lattice vector

~b2 unit reciprocal lattice vector

~b3 unit reciprocal lattice vector

B12, B21 stimulated absorption and emission coefficients

~B magnetic induction (field)

Cð~r1;~r2Þ correlation function

Cð~r1;~r2Þ density–density correlation function

C, C1 elastic spring constant

Cp specific heat at constant pressure

CV specific heat at constant volume

d spatial dimension

dhkl plane separation distance

D diffusivity or diffusion coefficient

Df fractal dimension

DV kinematic viscosity

DT thermal diffusivity

e fundamental charge

e�2W Debye–Waller factor

E energy

Eg energy gap

EF Fermi energy

DE crystal energy bandwidth

~Eo amplitude of incident electric field

~ES amplitude of scattered electric field

f force
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f ð~qÞ form factor

F Helmholtz free energy

Fo generalized force or field

~F free energy density

g splitting factor

g(r) pair distribution function (isotropic)

gð~r1;~r2Þ pair distribution function (non-isotropic)

g(E) density of states

gTLS(E) density of two-level systems of energy E

g(K) density of states

G shear modulus

G Gibbs free energy

G(r) van Hove correlation function

Gð~r; tÞ van Hove space-time correlation function

~Ghkl reciprocal lattice vector

h Miller index

h magnetic field scaled to critical point

�h 1.0545 � 10�34 Js

Hc coercivity

HC critical field

Hc1 lower critical field

Hc2 upper critical field

~H magnetic field

~Hint molecular or mean field

I current

IS scattered intensity

I 0S normalized scattering intensity

ISC short circuit current

~jQ heat flow per cross-sectional area

J shear compliance

J total atomic angular momentum quantum number

J current density

Jex (rij) exchange integral

~J total atomic angular momentum vector

k Miller index

k 8.99 � 109 Nm2/C2

kB Boltzmann constant, 1.38 � 10�23 J/K

K phonon or electron wave number

Kmax Debye cutoff wave number

KF Fermi surface wave number
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~ki incident wave vector

~ks scattered wave vector

l Miller index

lmfp mean free path

L atomic orbital angular momentum quantum number

L length

Lf latent heat of fusion

~L atomic orbital angular momentum vector

m mass

m magnetization scaled to critical point

m* effective mass of electron

mJ magnetic quantum number

mo electron mass

mp proton mass

M number of Rouse beads in a chain

MR remanence

MS saturation magnetization

~M magnetization (per volume)

n electron density in conduction band

nð~rÞ local number density

ne,neð~rÞ electron number density

nC critical density

nF Fermi energy level

nph (E) number density of phonons of energy E

ns cluster mass distribution

nS density of Cooper pairs

hni global average number density

hni Planck distribution or occupancy

hn(r)iexcl local number density excluding central

Dnð~r; tÞ local density fluctuation

hDn2i mean square density fluctuation

n̂ liquid crystal director

N number of monomers in a polymer chain

N number of particles

Ne number of electrons

Nex number of excitable electrons

NTLS constant density of two-level systems

p hole density in valence band

p fraction of occupied sites

p pressure scaled to critical point
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p* fixed point

p1, p2 probability of TLS level occupancy

pc percolation threshold

pij lattice sum terms

po dipole moment amplitude

Dp relative deviation from percolation threshold

~p momentum

P pressure

P probability a site belongs to spanning cluster

P Kronig–Penney barrier strength

Pð~rÞ probability for separation~r

PFD (E) Fermi–Dirac distribution function

~q scattering wave vector

Q heat

rij particle separation

ro nearest neighbor separation

Dr particle separation

hr2i mean squared displacement

~r1 position vector

~r2 position vector

R gas constant, 8.314 J/K

R(t) time-dependent response function

R* (o) frequency-dependent response function

RG radius of gyration

~Ri basis vector

RLP Landau–Placek ratio

Ro amplitude of response function

Rs cluster radius of gyration

hRi root-mean-squared displacement

s cluster mass

smax largest cluster mass

~s electron spin

S entropy

S average cluster mass

S atomic spin quantum number

Sð~qÞ static structure factor

Sð~q; tÞ dynamic structure factor

Sð~q;oÞ dynamic structure factor

SX (o) power spectrum

~S atomic spin vector
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t temperature scaled to critical point

Dt relative deviation from critical temperature

T temperature

Tc critical temperature

Tc Curie temperature

Tf melting/freezing temperature

TF Fermi temperature

Tg glass transition temperature

TK Kauzmann temperature

~T translation vector

u(rij) pair potential

uK (x) modulation of Bloch wave function

~uð~r; tÞ fluid velocity

U internal energy

v volume scaled to critical point

Dv relative deviation from critical volume

V volume

V(r) potential energy

Vo steady-state junction potential

VOC open circuit voltage

W multiplicity

W work

W amorphous barrier distribution width

X number ratio of liquid to gas molecules

DX generalized deformation

Z valence

a lattice angle

a Madelung constant

a specific heat critical exponent

aP isobaric expansivity

b lattice angle

b stretching or Kohlrausch exponent

b order parameter exponent

wm magnetic susceptibility

wS bulk modulus

wT isothermal compressibility

d critical isotherm exponent

dij Kroenecker delta function

e van der Waals energy scale

eo permittivity of free space
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er dielectric constant

f work function

f order parameter

fi phase angle

fK relative phase angle of Kth Rouse mode

fq,K polarization angle

fR (t) pulse response function

F magnetic flux

Fo quantum of magnetic flux (fluxon) 2.07 x10�15 Tm2

g lattice angle

g shear strain

g surface tension

g susceptibility/compressibility exponent

g average cluster mass exponent

g ratio of Cp/CV

G Brillouin linewidth

Gð~rÞ moment–moment (spin–spin) correlation function

G12, G21 stimulated absorption and emission rates

Z viscosity

ZS shear viscosity

ZV bulk viscosity

kth thermal conductivity

l molecular field strength

l wavelength

l penetration length

m diffusivity exponent

mB Bohr magneton, 9.27 � 10�24 Am2

mo permeability of free space

~m magnetic moment

~mh i average magnetic moment

n correlation length exponent

y scattering angle (half angle)

y phase angle

yD Debye temperature

r orbital radius

r mass density

r resistivity

rK density of allowed modes in K-space

s van der Waals lengthscale

s conductivity
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s shear stress

s largest cluster mass exponent

t relaxation time

t cluster mass distribution exponent

tcoll lifetime between collisions

u velocity

u speed of sound

u specific volume

uF Fermi velocity

ug group velocity

uo speed of sound in Debye limit

udrift drift speed

utherm thermal speed

o angular frequency

o spin renormalization exponent

oB Brillouin frequency shift

oK angular frequency of Kth phonon mode

oo resonant frequency

Do Larmor frequency

x correlation length

x Ginzburg–Landau coherence length

xo BCS intrinsic coherence length

c wave function

C wave function

z drag coefficient
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Index

Anderson transition, 241–242

anomalous diffusion, 307–310

basis set, 5

BCC (body centered cubic), 12–13

Bethe lattice, 303

Bloch waves, 218–220

Bohr magneton, 54

Boltzmann factor, 381

Boltzmann superposition, 253

bonds

covalent, 38–41

hydrogen, 41–42

ionic, 38

metallic, 42

van der Waals, 36–38

Bragg scattering, 88–89

phonons, 168, 191

Bragg scattering

electrons, 220

Bravais lattices, 10

2D nets, 9

Brillouin function, 58

Brillouin scattering, 148, 180

Brillouin zone, 163

and Bragg scattering, 168

and electrons, 227, 230

and phonons, 188, 191

definition, 167

higher zones, 168

Brownian motion

diffusion coefficient, 143

photon correlation spectroscopy, 144

random walk, 142

systemic drag, 257–258

chalcogenide, 30

chemical potential, 207, 275

close packed

ellipsoids, 27–28

hexagonal, 16

random, 26–27

coexistence, 268, 269, 286

coherence length, 355–356, 357

cohesive energy, 42

ionic crystals, 45–46

van der Waals crystal, 44

compressibility

isothermal, 103, 150, 277, 281, 321

conventional cell, 10

coordination

and radial distribution function, 25

number, 14

correlation function, 52

density–density, 79

spin–spin, 62

van Hove space, 104

van Hove space-time, 142

correlation length, 53, 62, 279, 282, 297, 299,

327, 329

critical

density, 273

exponents, 286, 326

mean field, 303, 321–324

percolation, 297

opalescence, 279

Ornstein–Zernike theory, 279–282

phenomena, 276–278

point, 270

CRN (continuous random network),

28–29

cross section, scattering, 71–72

cubic lattice, 12–15

BCC, 12–13

FCC, 12–13

simple cubic, 12

Curie law, 60

Curie temperature, 60, 61

Curie–Weiss law, 60

cyclic boundary conditions,

169–170

Debye

approximation, 187

model, 184, 186–187

temperature, 189

Debye–Waller factor, 178

density fluctuations

in liquids, 141

density of states

electron, 211, 228, 242

fractal, 198
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phonon, 187, 195, 200

two-level systems, 194

diamagnetism, 55–57

diffusion

anomalous, 307–310

coefficient, 143, 144

electron, Drude model, 203

equation, 143

mean free path, 190, 192

thermal, 189

thermal coefficient, 148

dipole scattering, 70

Dirac delta function, 373

director, 126

dispersion relation

free electron, 210

Kronig–Penney model, 223

magnon, 172

phonon, diatomic, 174

phonon, monatomic, 165

dissipation, 256–257

DLA (diffusion limited aggregation), 117

DLCA (diffusion limited cluster aggregation),

117

soot, 118–119

Dulong–Petit law, 183

dynamic structure factor, 139–142

Einstein model of specific heat, 184–186

Einstein relation, 145

electrical conductivity

and band occupation, 230–231

and electron scattering, 213–214

Drude model of, 203–204

in the free electron model, 212–213

ellipsoids

packing efficiency, 27–28

energy bands, 223–230

enthalpy, 378

equation of state, 376

Ising model, 319

scaled forms, 319–321

van der Waals, 316

equipartition theorem, 183, 202

Ewald–Oseen extinction theorem, 105, 214

exchange interaction, 61, 171, 283–284, 314

exclusion principle, 37, 39, 205

FCC (face centered cubic), 12–13

Fermi energy, 207, 212

Fermi–Dirac energy distribution, 207

ferromagnetism, 60

hysteresis curve, 63–64

order parameter, 283

phase diagrams, 284–285

spin waves, 171–173

field emission, 210

finite-sized scaling, 298–300

first law of thermodynamics, 267, 376

five-fold symmetry, 9

fixed points, 302

fluctuation–dissipation theorem, 257–261

fluctuations

in amorphous matter, 102

in liquids, 145

in order parameter, 313

near critical point, 278–279

form factor

atomic, 75

cell, 83, 89

Fourier

analysis, 367

series, 368

transforms, 368–373

fractals, 117–118

Sierpinski gasket, 117, 300

free energy, 378–379

gelation, 31, 305–307

Gibbs free energy, 267, 378

Ginzburg–Landau

coherence length, 355–356

equations, 354

mean field theory, 349–351

glass transition, 150–151

Kauzmann paradox, 151–153

structural relaxation, 153–154

Guinier scattering regime, 119–121

gyration

radius of, 120

Hall effect, 214–216

and holes, 233

Hall coefficient, 215

hard sphere fluid, 26

harmonic oscillator, 185

HCP (hexagonal close packed), 16, 27

heat capacity, 182–183

amorphous matter, 193–195

Debye model, 186–187

Dulong–Petit, 183

Einstein model, 184–186

electronic contribution, 207–210

two-level systems, 193–195

Helmholtz free energy, 324, 378

hexagonal lattice, 16

homogeneous functions, 294, 330

Hookian solid, 247

hydrodynamics

hydrodynamic modes, 145

Rayleigh–Brillouin spectrum,

148–150

hydrophilic and hydrophobic, 129

hysteresis, 63–64
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inelastic scattering

by phonons, 179–180

intermediate-range order, 105–106

Ioffe–Regel criterion, 197

Ising model, 314, 318

critical exponents, 324

equation of state, 319

Kadanoff renormalization, 327–330

Kadanoff renormalization, 327–330

Kauzmann paradox, 151–153

Kronig–Penney model, 221–225

Landau theory

mean field, 324–326

superconductors, 349–351

Landau–Placek ratio, 150

Larmor frequency, 56

lattice, 4

Bravais lattices, 9, 10

conventional cell, 10

primitive cells, 6

symmetry, 8–9

lattice vibrations

Debye approximation, 187

Debye model, 186–187

dispersion relation, 165, 174

phonon density of states, 187

waves, 164–165

Laue conditions, 85

Lennard-Jones potential, 37, 314

lever rule, 271–272, 277

linear response, 247

lipids, 129

liquid crystals, 124–129

LCD display, 126

lyotropic, 129–131

microemulsions, 130

nematic phase, 126

smectic phase, 128

thermotropic, 124–129

liquids

and the glass transition, 150–151

density fluctuations, 141

hydrodynamic modes, 145–150

Newtonian, 247, 248

polymer, 154

Rayleigh–Brillouin spectrum, 148–150

structure factor, 97

long-range order, 20, 30

lower critical field, 351, 357–359

Madelung constant, 46

magnetic moment, 53–55

magnons, 171–173

dispersion relation, 172

specific heat contribution, 200

mean field, 304, 313

critical exponents, 321–324

interaction, 313–315

Ising model, 318–319

Landau theory, 324–326

theory, 313–315

van der Waals, 130, 316–318

micelles, 130

microemulsions, 130, 131

Miller indices, 86–87

molecular field, 60, 61, 315, 318

Mott transition, 226

Navier–Stokes equations, 146

nematic liquid crystal, 126

Newtonian fluid, 247

nuclear magneton, 55

nucleation

barrier, 287

critical radius of, 275

heterogeneous, 287

homogeneous, 274–276

opalescence. See critical opalescence

order parameter, 272–274

exponent, 322

fluids, 273

in percolation, 296

magnetic, 283

orientational order, 62

orientational ordering, 51

correlation function, 52

correlation length, 53

Ornstein–Zernike theory, 279–282

pair distribution function

defined, 22–25

radial distribution function, 25

related to structure factor, 97

self-similar matter, 112–114

paramagnetism, 57

partition function, 381

penetration length, 338–339, 357

percolation

bond percolation, 289

correlation length, 297

exponents, 297

site percolation, 289

spanning cluster, 292

threshold, 292

phase diagrams

coexistence curve, 269

critical point, 270

fluids, 269–272

lever rule, 271–272

magnetic, 284–285

triple point, 270
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phase transition

first order, 274

second order, 274, 276, 279, 293, 313

phonons, 170–171

inelastic scattering by, 177–180

localization, 193, 197–199

Umklapp collisions, 191

photoelectric effect, 210

photovoltaic cell, 240–241

pn-junction, 237–240

polymer

coil structure, 110–115

dynamics

reptation model, 157–159

Rouse modes, 154–157

entropic spring, 154–155

pair distribution function, 113

Porod scattering law, 124

power spectrum, 258

primitive cells, 6

pulse response function, 253

Raman scattering, 180

random walk, 110–112, 281

diffusion, 142–144

self-avoiding, 114–115

Rayleigh scattering, 100–101

blue sky, 100

fiber attenuation, 104

Rayleigh–Benard convection, 131

Rayleigh–Brillouin spectrum, 148–150

RCP (random close packed), 26–27

reciprocal space

Fourier transform, 86

lattice, 85–86

lattice vectors, 86

related to Bragg scattering, 88–89

relaxation

polymer, 159

polymers, 157

structural, 153

viscoelastic, 248–249

renormalization

Kadanoff (Ising model), 327–330

triangular lattice, 300–303

response function, 251, 253–256

in fluctuation–dissipation, 258

rotational invariance, 22

scaling

finite-sized, 298–300

law of corresponding states, 285–286, 319–321

relations, 297–298, 309, 312, 330

scattering

Bragg, 88–89

by fractals, 118

by liquid crystals, 126

by phonons, 177–180, 191

cross section, 71–72

in crystals, 83–84

in glass, 97–100

in liquids, 97, 141

lengthscale, 77–79

multiple, 193, 197, 220

of electrons, 213–214

Rayleigh, 100–101

wave vector, 74

second law of thermodynamics, 267, 377, 379

self-assembly, 131–132

self-avoiding walk, 114–115

self-similarity, 111–112, 116, 279, 289, 296,

299, 300, 308, 327

fractals, 117–118

semiconductors

acceptor levels, 236–237

donor levels, 236–237

doped, 235

holes, 232–233

intrinsic, 233–235

conductivity, 235

n-type, 236

photovoltaic cell, 240–241

pn-junction, 237–240

p-type, 236

short-range order, 26, 30, 97–100

Sierpinski gasket, 117, 300, 327

small angle scattering

SAXS, SANS, 105–106

smectic liquid crystal, 128

soot, 118–119

spin waves. See magnons

spin–spin correlation function, 62, 328

structure factor

amorphous matter, 97

and density–density correlation function,

79–80

and G(r), 103

dynamic, 141

fractals, 118

in crystals, 83–84

missing reflections, 89–91

self-similar matter, 113

static, 77

superconductors

coherence length, 355–356

Cooper pairs, 346–348

critical field, 340

discovery, 334

energy gap, 343

flux quantization, 348

high Tc, 360

isotope effect, 344–345

London equation, 338

Meissner effect, 335–337
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superconductors (cont.)

penetration length, 338–339

specific heat, 340–343

Type II, 351–352

critical fields, 356–360

Ginzburg–Landau theory, 352–356

vortex state, 352

supercooling/heating, 274–276

surface tension, 275

susceptibility

Curie–Weiss law, 60

diamagnetic, 56

divergence, 285, 323, 325, 331

paramagnetic, 58

symmetry

amorphous, 21–22

breaking, 50, 51

crystal, 8–9

five-fold, 9

operations, 9

thermal conductivity

crystals, 192

defined, 189–191

electronic contribution, 217

glasses, 193

two-level systems, 195–197

thermal expansion, 181, 278

thermal fluctuations, 102, 145, 258, 265, 279

thermionic emission, 210

thermotropic liquid crystals, 125–129

Thomson scattering, 71

translation vector, 4, 10, 83, 177

translational invariance, 22

triple point, 270

two-level systems, 194–197, 342

Umklapp process, 191

unit cell, 6, 10

universality, 285–286, 303, 324

upper critical field, 351, 359–360

van der Waals

bonds, 36–38

equation of state, 316–318

van Hove

correlation function, 104

discontinuities, 230, 242

space-time correlation function, 142

viscoelastic relaxation, 154, 248–249,

254

dissipation, 256–257

Rouse modes, 154–157

viscosity

bulk, 146

near gel point, 306

shear, 145, 248

Voronoi polyhedra, 27

Wigner–Seitz cell, 7, 27, 168

work function, 210

X-ray

cross section, 71

diffraction, 89

scattering from glasses, 97–100
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